Skip to main content
Log in

The cadmium binding domains in the metallothionein isoform Cd7-MT10 from Mytilus galloprovincialis revealed by NMR spectroscopy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The metal–thiolate connectivity of recombinant Cd7-MT10 metallothionein from the sea mussel Mytilus galloprovincialis has been investigated for the first time by means of multinuclear, multidimensional NMR spectroscopy. The internal backbone dynamics of the protein have been assessed by the analysis of 15N T 1 and T 2 relaxation times and steady state {1H}–15N heteronuclear NOEs. The 113Cd NMR spectrum of mussel MT10 shows unique features, with a remarkably wide dispersion (210 ppm) of 113Cd NMR signals. The complete assignment of cysteine Hα and Hβ proton resonances and the analysis of 2D 113Cd–113Cd COSY and 1H–113Cd HMQC type spectra allowed us to identify a four metal–thiolate cluster (α-domain) and a three metal–thiolate cluster (β-domain), located at the N-terminal and the C-terminal, respectively. With respect to vertebrate MTs, the mussel MT10 displays an inversion of the α and β domains inside the chain, similar to what observed in the echinoderm MT-A. Moreover, unlike the MTs characterized so far, the α-domain of mussel Cd7-MT10 is of the form M4S12 instead of M4S11, and has a novel topology. The β-domain has a metal–thiolate binding pattern similar to other vertebrate MTs, but it is conformationally more rigid. This feature is quite unusual for MTs, in which the β-domain displays a more disordered conformation than the α-domain. It is concluded that in mussel Cd7-MT10, the spacing of cysteine residues and the plasticity of the protein backbone (due to the high number of glycine residues) increase the adaptability of the protein backbone towards enfolding around the metal–thiolate clusters, resulting in minimal alterations of the ideal tetrahedral geometry around the metal centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kagi JHR (1991) Methods Enzymol 205:613–626

    Article  PubMed  CAS  Google Scholar 

  2. Romero-Isart N, Vasak M (2002) J Inorg Biochem 88:388–396

    Article  PubMed  CAS  Google Scholar 

  3. Kagi JHR (1993) In: Suzuki K, Imura N, Kimura M (eds) Metallothionein III. Birkhauser-Verlag, Basel, pp 29–55

  4. Bremner I (1991) Methods Enzymol 205:25–35

    Article  PubMed  CAS  Google Scholar 

  5. Otvos JD, Olafson RW, Armitage IM (1982) J Biol Chem 257:2427–2431

    PubMed  CAS  Google Scholar 

  6. Braun W, Vasak M, Robbins AH, Stout CD, Wagner G, Kagi JHR, Wuthrich K (1992) Proc Natl Acad Sci USA 89:10124–10128

    Article  PubMed  CAS  Google Scholar 

  7. Vasak M (1998) Biodegradation 9:501–512

    Article  PubMed  CAS  Google Scholar 

  8. Willner H, Vasak M, Kagi JHR (1987) Biochemistry 26:6287–6292

    Article  PubMed  CAS  Google Scholar 

  9. Zangger K, Armitage IM (2002) J Inorg Biochem 88:135–143

    Article  PubMed  CAS  Google Scholar 

  10. Capasso C, Carginale V, Crescenzi O, Di Maro D, Parisi E, Spadaccini R, Temussi PA (2003) Structure 11:435–443

    Article  PubMed  CAS  Google Scholar 

  11. Riek R, Precheur B, Wang Y, Mackay EA, Wider G, Gunthert P, Liu A, Kagi JHR, Wuthrich K (1999) J Mol Biol 291:417–428

    Article  PubMed  CAS  Google Scholar 

  12. Narula SS, Brouwer M, Hua Y, Armitage IM (1995) Biochemistry 34:620–631

    Article  PubMed  CAS  Google Scholar 

  13. Overnell J, Good M, Vasak M (1988) Eur J Biochem 172:171–177

    Article  PubMed  CAS  Google Scholar 

  14. Jenny MJ, Ringwood AH, Schey K, Warr GW, Chapman RW (2004) Eur J Biochem 271:1702–1712

    Article  PubMed  CAS  Google Scholar 

  15. Peterson CW, Narula SS, Armitage IM (1996) FEBS Lett 379:85–93

    Article  PubMed  CAS  Google Scholar 

  16. Munoz A, Forsterling FH, Shaw CFIII, Petering DH (2002) J Biol Inorg Chem 7:713–724

    Article  PubMed  CAS  Google Scholar 

  17. Vergani L, Grattarola M, Borghi C, Dondero F, Viarengo A (2005) FEBS J 272:6014–6023

    Article  PubMed  CAS  Google Scholar 

  18. Vergani L, Grattarola M, Grasselli E, Dondero F, Viarengo A (2007) Arch Biochem Biophys 465:247–253

    Article  PubMed  CAS  Google Scholar 

  19. Barsyte D, White KN, Lovejoy DA (1999) Comp Biochem Physiol C Toxicol Pharmacol 122:287–296

    CAS  Google Scholar 

  20. Wang Y, Mackay EA, Zerbe O, Hess D, Hunziker PE, Vasak M, Kagi JHR (1995) Biochemistry 34:7460–7467

    Article  PubMed  CAS  Google Scholar 

  21. Messerle BA, Schaffer A, Vasak M, Kagi JHR, Wuthrich K (1990) J Mol Biol 214:765–779

    Article  PubMed  CAS  Google Scholar 

  22. Wang H, Zhang Q, Cai B, Li H, Sze K-H, Huang Z-X, Wu H-M, Sun H (2006) FEBS Lett 580:795–800

    Article  PubMed  CAS  Google Scholar 

  23. Shultze P, Worgotter E, Braun W, Wagner G, Vasak M, Kagi JHR, Wuthrich K (1988) J Mol Biol 203:251–268

    Article  Google Scholar 

  24. Frey MH, Wagner G, Vasak M, Sorensen OW, Neuhaus D, Worgotter E, Kagi JHR, Ernst RR, Wuthrich K (1985) J Am Chem Soc 107:6847–6851

    Article  CAS  Google Scholar 

  25. Neuhaus D (2003) Magn Res Chem 41:S70–S79

    Article  CAS  Google Scholar 

  26. Lipari G, Szabo A (1982) J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  27. Kay LE, Torchia DA, Bax A (1989) Biochemistry 28:8972–8979

    Article  PubMed  CAS  Google Scholar 

  28. Clore GM, Driscoll PC, Wingfield PT, Gronenborn AM (1990) Biochemistry 29:7387–7401

    Article  PubMed  CAS  Google Scholar 

  29. Lee AL, Wand AJ (1999) J Biomol NMR 13:101–112

    Article  PubMed  CAS  Google Scholar 

  30. Palmer AGIII (2001) Annu Rev Biophys Biomol Struct 30:129–155

    Article  PubMed  CAS  Google Scholar 

  31. Oz G, Zangger K, Armitage IM (2001) Biochemistry 40:11433–11441

    Article  PubMed  CAS  Google Scholar 

  32. D’Auria S, Carginale V, Scudiero R, Crescenzi O, Di Maro D, Temussi PA, Parisi E, Capasso C (2001) Biochem J 354:291–299

    Article  PubMed  CAS  Google Scholar 

  33. Harlow P, Watkins E, Thornton RD, Nemer M (1989) Mol Cell Biol 9:5445–5455

    PubMed  CAS  Google Scholar 

  34. Goodfellow BJ, Joao Lima M, Ascenso C, Kennedy M, Sikkink R, Rusnak F, Moura I, Moura JJG (1998) Inorg Chim Acta 273:279–287

    Article  CAS  Google Scholar 

  35. Daragan VA, Mayo KH (1997) Prog Nucl Magn Res Spectrosc 31:63–105

    Article  CAS  Google Scholar 

  36. Campos-Olivas R, Newman JL, Summers MF (2000) J Mol Biol 296:633–649

    Article  PubMed  CAS  Google Scholar 

  37. Laemmli UK (1970) Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  38. Bradford MM (1976) Anal Biochem 72:142–146

    Article  Google Scholar 

  39. Bühler R, Kägi JHR (1978) Exp Suppl 34:211–220

    Google Scholar 

  40. Cavanagh J, Fairbrother WJ, Palmer AGIII, Skelton NJ (1996) Protein NMR spectroscopy. Academic, New York

  41. Sattler M, Schleucher J, Griesinger C (1999) Prog NMR Spectrosc 34:93–158

    Article  CAS  Google Scholar 

  42. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Biochemistry 33:5984–6003

    Article  PubMed  CAS  Google Scholar 

  43. Bartels C, Xia T-H, Billeter M, Güntert P, Wüthrich K (1995) J Biomol NMR 6:1–10

    Article  CAS  Google Scholar 

  44. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax S (1995) J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  45. Johnson BA, Blevins RA (1994) J Biomol NMR 4:603–614

    Article  CAS  Google Scholar 

  46. Palmer AGIII, Rance M, Wright PE (1991) J Am Chem Soc 113:4371–4380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. G. Musco and Dr. L. Mollica (DIBIT, Milan) for helpful discussions, and Professor M. Piccioli (CERM, University of Florence) for allocating instrumental time under the Large Scale Facility programme. We would like to extend our gratitude to Myriam Grattarola and Mara Carloni for their experimental contributions, and to Professor Capannelli for allocating instrument time for the polarized Spectra AA558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Digilio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digilio, G., Bracco, C., Vergani, L. et al. The cadmium binding domains in the metallothionein isoform Cd7-MT10 from Mytilus galloprovincialis revealed by NMR spectroscopy. J Biol Inorg Chem 14, 167–178 (2009). https://doi.org/10.1007/s00775-008-0435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0435-y

Keywords

Navigation