Skip to main content
Log in

A comparison of the reaction mechanisms of iron- and manganese-containing 2,3-HPCD: an important spin transition for manganese

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Homoprotocatechuate (HPCA) dioxygenases are enzymes that take part in the catabolism of aromatic compounds in the environment. They use molecular oxygen to perform the ring cleavage of ortho-dihydroxylated aromatic compounds. A theoretical investigation of the catalytic cycle for HPCA 2,3-dioxygenase isolated from Brevibacterium fuscum (Bf 2,3-HPCD) was performed using hybrid DFT with the B3LYP functional, and a reaction mechanism is suggested. Models of different sizes were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the enzyme follows a reaction pathway similar to that for other non-heme iron dioxygenases, and for the manganese-dependent analog MndD, although with different energetics. The computational results suggest that the rate-limiting step for the whole reaction of Bf 2,3-HPCD is the protonation of the activated oxygen, with an energy barrier of 17.4 kcal/mol, in good agreement with the experimental value of 16 kcal/mol obtained from the overall rate of the reaction. Surprisingly, a very low barrier was found for the O–O bond cleavage step, 11.3 kcal/mol, as compared to 21.8 kcal/mol for MndD (sextet spin state). This result motivated additional studies of the manganese-dependent enzyme. Different spin coupling between the unpaired electrons on the metal and on the evolving substrate radical was observed for the two enzymes, and therefore the quartet spin state potential energy surface of the MndD reaction was studied. The calculations show a crossing between the sextet and the quartet surfaces, and it was concluded that a spin transition occurs and determines a barrier of 14.4 kcal/mol for the O–O bond cleavage, which is found to be the rate-limiting step in MndD. Thus the two 83% identical enzymes, using different metal ions as co-factors, were found to have similar activation energies (in agreement with experiment), but different rate-limiting steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ornston LN, Stanier RY (1966) J Biol Chem 241:3776–3786

    PubMed  CAS  Google Scholar 

  2. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Chem Rev 100:235–350

    Article  PubMed  CAS  Google Scholar 

  3. Que L Jr, Ho RYN (1996) Chem Rev 96:2607–2624

    Article  PubMed  CAS  Google Scholar 

  4. Que L Jr (2000) Nat Struct Biol 7:182–184

    Article  PubMed  CAS  Google Scholar 

  5. Dagley S (1977) Surv Prog Chem 8:121–170

    CAS  Google Scholar 

  6. Broderick JB (1999) Essays Biochem 34:173–189

    PubMed  CAS  Google Scholar 

  7. Lipscomb JD, Orville AM (1992) Met Ions Biol Syst 28:243–298

    CAS  Google Scholar 

  8. Vetting MW, Wackett LP, Que L Jr, Lipscomb JD, Ohlendorf DH (2004) J. Bacteriol 186:1945–1958

    Article  PubMed  CAS  Google Scholar 

  9. Bassan A, Borowski T, Siegbahn PEM (2004) Dalton Trans 20:3153–3162

    Google Scholar 

  10. Whiting AK, Boldt YR, Hendrich LP, Wackett LP, Que L Jr (1996) Biochemistry 35:160–170

    Article  PubMed  CAS  Google Scholar 

  11. Groce SL, Lipscomb JD (2003) J Am Chem Soc 125:11780–11781

    Article  PubMed  CAS  Google Scholar 

  12. Sato N, Uragami Y, Nishizaki T, Takahashi Y, Sazaki G, Sugimoto K, Nokana T, Masai E, Fukuda M, Senda T (2002) J Mol Biol 321:621–636

    Article  PubMed  CAS  Google Scholar 

  13. Arciero DM, Orville AM, Lipscomb JD (1985) J Biol Chem 260:14035–14044

    PubMed  CAS  Google Scholar 

  14. Bugg TDH, Lin G (2001) Chem Commun 11:941–952

    Article  CAS  Google Scholar 

  15. Miller MA, Lipscomb JD (1996) J Biol Chem 271:5524–5535

    Article  PubMed  CAS  Google Scholar 

  16. Shu L, Chiou YM, Orville AM, Miller MA, Lipscomb JD, Que L Jr (1995) Biochemistry 34:6649–6659

    Article  PubMed  CAS  Google Scholar 

  17. Groce SL, Lipscomb JD (2005) Biochemistry 44:7175–7188

    Article  PubMed  CAS  Google Scholar 

  18. Emerson J, Wagner ML, Reynolds MF, Que L Jr, Sadowsky MJ, Wacket LP (2005) J Biol Inorg Chem 10:751–760

    Article  PubMed  CAS  Google Scholar 

  19. Kovaleva ED, Lipscomb JD (2007) Science 316:453–457

    Article  PubMed  CAS  Google Scholar 

  20. Kovaleva ED, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Acc Chem Res 40:475–483

    Article  PubMed  CAS  Google Scholar 

  21. Georgiev V, Borowski T, Siegbahn PEM (2006) J Biol Inorg Chem 11:571–585

    Article  PubMed  CAS  Google Scholar 

  22. Schrödinger Inc. (2000) JAGUAR 5.5. Portland, Oregon

  23. Frisch MJ, Trucks GW, Schlegel HB, et al. (2004) Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford, CT

  24. Harvey JN, Aschi M, Schwarz H, Koch W (1998) Theor Chem Acc 99:95–99

    CAS  Google Scholar 

  25. Mouesca J-M, Chen JC, Noodleman L, Bashford D, Case DA (1994) J Am Chem Soc 116:11898–11914

    Article  CAS  Google Scholar 

  26. Noodleman L, Case DA (1992) Adv Inorg Chem 38:423–470

    Article  CAS  Google Scholar 

  27. Himo F (2005) Biochim Biophys Acta–Bioenerg 1707:24–33

    Google Scholar 

  28. Bassan A, Blomberg MRE, Siegbahn PEM (2004) J Biol Inorg Chem 9:439–452

    Article  PubMed  CAS  Google Scholar 

  29. Groce SL, Miller-Rodeberg MA, Lipscomb JD (2004) Biochemistry 43:15141–15153

    Article  PubMed  CAS  Google Scholar 

  30. Arciero DM, Lipscomb JD, Huynh BH, Kent TA, MÃnck E (1983) J Biol Chem 258:14981–14991

    PubMed  CAS  Google Scholar 

  31. Shu L, Chiou YM, Orville AM, Miller MA, Lipscomb JD, Que L Jr (1995) Biochemistry 34:6649–6659

    Article  PubMed  CAS  Google Scholar 

  32. Mabrouk PA, Orville AM, Lipscomb JD, Solomon EI (1991) J Am Chem Soc 113:4053–4061

    Article  CAS  Google Scholar 

  33. Vaillancourt FH, Barbosa CJ, Spiro TG, Bolin JT, Blades MW, Turner RFB, Eltis LD (2002) J Am Chem Soc 124:2485–2496

    Article  PubMed  CAS  Google Scholar 

  34. Wirstam M, Lippard SJ, Friesner RA (2003) J Am Chem Soc 125:3980–3987

    Article  PubMed  CAS  Google Scholar 

  35. Lundberg M, Morokuma K (2007) J Phys Chem 111:9380–9389

    CAS  Google Scholar 

  36. Bassan A, Blomberg, MRE, Siegbahn PEM (2003) Chem Eur J 9:106–115

    Google Scholar 

  37. Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932

    Article  PubMed  CAS  Google Scholar 

  38. Borowski T, Georgiev V, Siegbahn PEM (2005) J Am Chem Soc 127:17303–17314

    Article  PubMed  CAS  Google Scholar 

  39. Harvey JN, Poli R, Smith KM (2003) Coord Chem Rev 238–239:347–361

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.B. acknowledges the support from the Polish State Committee for Scientific Research (Grant N204 173 31/3823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Georgiev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information PDF (271 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, V., Borowski, T., Blomberg, M.R.A. et al. A comparison of the reaction mechanisms of iron- and manganese-containing 2,3-HPCD: an important spin transition for manganese. J Biol Inorg Chem 13, 929–940 (2008). https://doi.org/10.1007/s00775-008-0380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0380-9

Keywords

Navigation