Skip to main content
Log in

Correlation of acid-induced conformational transition of ferricytochrome c with cyanide binding kinetics

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A relation between pH-induced conformational transitions of horse heart ferricytochrome c and the kinetics of external ligand coordination to heme iron was investigated by optical spectroscopy, circular dichroism and viscometry. The dependencies of both the association, k a, and dissociation rate constants of cyanide binding on pH were determined from kinetic measurements. The association rate constant exhibits a bell-shaped form of dependence on pH in the region where this protein unfolds. The maximum of the dependence of k a on pH is found to be coincident with the pK values of conformational transitions of ferricytochrome c in solutions with both low and high ionic strengths. This observation is explained in terms of ferricytochrome c unfolding, which is characterized by two processes: the gradual opening of the heme crevice accompanied by the detachment of the axial Met80 and its replacement with a water molecule. The former process enhances the rate, whereas the latter results in the inhibition of the rate of cyanide binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Varhač R, Antalík M (2004) Biochemistry 43:3564–3569

    Article  PubMed  CAS  Google Scholar 

  2. Goto Y, Calciano LJ, Fink AL (1990) Proc Natl Acad Sci USA 87:573–577

    Article  PubMed  CAS  Google Scholar 

  3. Shaw RW, Hartzell CR (1976) Biochemistry 15:1909–1914

    Article  PubMed  CAS  Google Scholar 

  4. Berka V, Vygodina T, Musatov A, Nicholls P, Konstantinov AA (1993) FEBS Lett 315:237–241

    Article  PubMed  CAS  Google Scholar 

  5. Panda M, Robinson NC (1995) Biochemistry 34:10009–10018

    Article  PubMed  CAS  Google Scholar 

  6. Fabian M, Palmer G (1995) Biochemistry 34:1534–1540

    Article  PubMed  CAS  Google Scholar 

  7. Klapper MH, Uchida H (1971) J Biol Chem 246:6849–6854

    PubMed  CAS  Google Scholar 

  8. Dou Y, Olson JS, Wilkinson AJ, Ikeda-Saito M (1996) Biochemistry 35:7107–7113

    Article  PubMed  CAS  Google Scholar 

  9. Bidwai A, Witt M, Foshay M, Vitello LB, Satterlee JD, Erman JE (2003) Biochemistry 42:10764–10771

    Article  PubMed  CAS  Google Scholar 

  10. Goldsack DE, Eberlein WS, Alberty RA (1966) J Biol Chem 241:2653–2660

    PubMed  CAS  Google Scholar 

  11. Ver Ploeg DA, Alberty RA (1968) J Biol Chem 243:435–440

    PubMed  CAS  Google Scholar 

  12. Smerdon SJ, Krzywda S, Brzozowski AM, Davies GJ, Wilkinson AJ, Brancaccio A, Cutruzzolá F, Allocatelli CT, Brunori M, Li T, Brantley RE Jr, Carver TE, Eich RF, Singleton E, Olson JS (1995) Biochemistry 34:8715–8725

    Article  PubMed  CAS  Google Scholar 

  13. Olson JS, Phillips GN Jr (1997) J Biol Inorg Chem 2:544–552

    Article  CAS  Google Scholar 

  14. Brancaccio A, Cutruzzolá F, Allocatelli CT, Brunori M, Smerdon SJ, Wilkinson AJ, Dou Y, Keenan D, Ikeda-Saito M, Brantley RE Jr, Olson JS (1994) J Biol Chem 269:13843–13853

    PubMed  CAS  Google Scholar 

  15. Foshay MC, Vitello LB, Erman JE (2004) Biochemistry 43:5065–5072

    Article  PubMed  CAS  Google Scholar 

  16. Dumortier C, Holt JM, Meyer TE, Cusanovich MA (1998) J Biol Chem 273:25647–25653

    Article  PubMed  CAS  Google Scholar 

  17. Dumortier C, Meyer TE, Cusanovich MA (1999) Arch Biochem Biophys 371:142–148

    Article  PubMed  CAS  Google Scholar 

  18. Tomášková N, Varhač R, Žoldák G, Olekšáková L, Sedláková D, Sedlák E (2007) J Biol Inorg Chem 12:257–266

    Article  PubMed  CAS  Google Scholar 

  19. Mintorovitch J, Satterlee JD (1988) Biochemistry 27:8045–8050

    Article  PubMed  CAS  Google Scholar 

  20. Motie M, Kassner RJ, Meyer TE, Cusanovich MA (1990) Biochemistry 29:1932–1936

    Article  PubMed  CAS  Google Scholar 

  21. George P, Tsou CL (1952) Biochem J 50:440–448

    PubMed  CAS  Google Scholar 

  22. Job D, Zeba B, Puppo A, Rigaud J (1980) Eur J Biochem 107:491–500

    Article  PubMed  CAS  Google Scholar 

  23. Erman JE (1974) Biochemistry 13:39–44

    Article  PubMed  CAS  Google Scholar 

  24. Ellis WD, Dunford HB (1968) Biochemistry 7:2054–2062

    Article  PubMed  CAS  Google Scholar 

  25. Morishima I, Inubushi T (1978) J Am Chem Soc 100:3568–3574

    Article  CAS  Google Scholar 

  26. Yoshikawa S, O’Keeffe DH, Caughey WS (1985) J Biol Chem 260:3518–3528

    PubMed  CAS  Google Scholar 

  27. Behere DV, Gonzales-Vergara E, Goff HM (1985) Biochim Biophys Acta 832:319–325

    PubMed  CAS  Google Scholar 

  28. Yao Y, Qian C, Ye K, Wang J, Bai Z, Tang W (2002) J Biol Inorg Chem 7:539–547

    Article  PubMed  CAS  Google Scholar 

  29. Thanabal V, de Ropp JS, La Mar GN (1988) J Am Chem Soc 110:3027–3035

    Article  CAS  Google Scholar 

  30. Satterlee JD, Erman JE (1983) J Biol Chem 258:1050–1056

    PubMed  CAS  Google Scholar 

  31. Milani M, Ouellet Y, Ouellet H, Guertin M, Boffi A, Antonini G, Bocedi A, Mattu M, Bolognesi M, Ascenzi P (2004) Biochemistry 43:5213–5221

    Article  PubMed  CAS  Google Scholar 

  32. Poulos TL, Freer ST, Alden RA, Xuong NH, Edwards SL, Hamlin RC, Kraut J (1978) J Biol Chem 253:3730–3735

    PubMed  CAS  Google Scholar 

  33. Mintorovitch J, van Pelt D, Satterlee JD (1989) Biochemistry 28:6099–6104

    Article  PubMed  CAS  Google Scholar 

  34. Ikeda-Saito M (1987) Biochemistry 26:4344–4349

    Article  PubMed  CAS  Google Scholar 

  35. Bánó M, Strhársky I, Hrmo I (2003) Rev Sci Instrum 74:4788–4793

    Article  CAS  Google Scholar 

  36. Sutin N, Yandell JK (1972) J Biol Chem 247:6932–6936

    PubMed  CAS  Google Scholar 

  37. Shechter E, Saludjian P (1967) Biopolymers 5:788–790

    Article  PubMed  CAS  Google Scholar 

  38. Goto Y, Takahashi N, Fink AL (1990) Biochemistry 29:3480–3488

    Article  PubMed  CAS  Google Scholar 

  39. Greenwood C, Wilson MT (1971) Eur J Biochem 22:5–10

    Article  PubMed  CAS  Google Scholar 

  40. Stellwagen E (1968) Biochemistry 7:2893–2898

    Article  PubMed  CAS  Google Scholar 

  41. Myer YP, Saturno AF (1990) J Protein Chem 9:379–387

    Article  PubMed  CAS  Google Scholar 

  42. Myer YP, Saturno AF (1991) J Protein Chem 10:481–494

    Article  PubMed  CAS  Google Scholar 

  43. Sedlák E, Antalík M (1999) Biochim Biophys Acta 1434:347–355

    PubMed  Google Scholar 

  44. Theorell H, Åkesson Å (1941) J Am Chem Soc 63:1812–1818

    Article  CAS  Google Scholar 

  45. Lanir A, Yu N-T, Felton RH (1979) Biochemistry 18:1656–1660

    Article  PubMed  CAS  Google Scholar 

  46. Myer YP, Srivastava RB, Kumar S, Raghavendra K (1983) J Protein Chem 2:13–42

    Article  CAS  Google Scholar 

  47. Oellerich S, Wackerbarth H, Hildebrandt P (2002) J Phys Chem B 106:6566–6580

    Article  CAS  Google Scholar 

  48. Santucci R, Bongiovanni C, Mei G, Ferri T, Polizio F, Desideri A (2000) Biochemistry 39:12632–12638

    Article  PubMed  CAS  Google Scholar 

  49. Jordan T, Eads JC, Spiro TG (1995) Protein Sci 4:716–728

    Article  PubMed  CAS  Google Scholar 

  50. Indiani C, de Sanctis G, Neri F, Santos H, Smulevich G, Coletta M (2000) Biochemistry 39:8234–8242

    Article  PubMed  CAS  Google Scholar 

  51. Babul J, Stellwagen E (1971) Biopolymers 10:2359–2361

    Article  PubMed  CAS  Google Scholar 

  52. Giacometti GM, Ascenzi P, Brunori M, Rigatti G, Giacometti G, Bolognesi M (1981) J Mol Biol 151:315–319

    Article  PubMed  CAS  Google Scholar 

  53. Stryer L, Kendrew JC, Watson HC (1964) J Mol Biol 8:96–104

    Article  PubMed  CAS  Google Scholar 

  54. Behere DV, Ales DC, Goff HM (1986) Biochim Biophys Acta 871:285–292

    PubMed  CAS  Google Scholar 

  55. Bay Y, Sosnick TR, Mayne L, Englander SW (1995) Science 269:192–197

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants 2/6167/26 and 1/3252/06 from the Slovak Grant Agency. We thank Dr. Marián Fabian for his editorial help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Antalík.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials (PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varhač, R., Antalík, M. Correlation of acid-induced conformational transition of ferricytochrome c with cyanide binding kinetics. J Biol Inorg Chem 13, 713–721 (2008). https://doi.org/10.1007/s00775-008-0357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0357-8

Keywords

Navigation