Skip to main content
Log in

Near-exact enthalpy–entropy compensation governs the thermal unfolding of protonation states of oxidized cytochrome c

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This paper reports the first quantitative analysis of the thermal transitions of all protonation states of oxidized horse heart cytochrome c at low anion concentration. Changes of secondary and tertiary structure were probed by ultraviolet (UV) as well as visible circular dichroism and absorption spectroscopy, respectively. The temperature dependence of spectra were recorded at pH values assignable to a set of different protonation states which encompass the canonical Theorell–Åkesson states and the recently discovered III* state. Our experimental data suggest a two-step process of thermal unfolding for all protonation states. The respective thermodynamic parameters were obtained from a global analysis of the temperature dependence of corresponding visible circular dichroism (CD) and absorption spectra. The results of this analysis revealed a statistically significant enthalpy–entropy compensation with different apparent compensation temperatures for the two consecutive thermal transitions (319 and 357 K). This reflects the narrow distribution of the respective folding temperatures. UVCD spectra suggest that even the thermal transitions of protonation states occupied at acidic and alkaline pH cause only a very modest unfolding of the protein’s helical structure. Our data indicate the protonation-induced unfolding at room temperatures predominantly affects the Ω-loops of the protein. The two thermal transitions involve changes of two foldons, i.e. the unfolding of two short β-strand segments (associated with the yellow foldon) followed by the unfolding of the 60′ helix (green foldon) that connects the two Ω-loops of the protein. Apparently, intra-backbone hydrogen bonding is strong enough to mostly protect the terminal N- and C-helices from unfolding even at rather extreme conditions.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

cyt c :

Cytochrome c

CD:

Circular dichroism

UVCD:

Ultraviolet circular dichroism

References

  1. MacMunn CA (1885) Proc R Soc Lond 39:248–252

    Article  Google Scholar 

  2. Keilin D (1930) Proc R Soc Lond B 106:418–444

    Article  CAS  Google Scholar 

  3. Bodo G (1955) Nature 176:829–830

    Article  PubMed  CAS  Google Scholar 

  4. Dickerson RE, Kopka ML, Borders CL, Varnum J, Weinzierl JE, Margoliash E (1967) J Mol Biol 29:77–95

    Article  PubMed  CAS  Google Scholar 

  5. Adman ET (1979) Biochim Biophys Acta 549:107–144

    Article  PubMed  CAS  Google Scholar 

  6. Englander SW (2000) Ann Rev Biophys Biomol Struct 29:213–238

    Article  CAS  Google Scholar 

  7. Krishna MMG, Maity H, Rumbley JN, Lin Y, Englander SW (2006) J Mol Biol 359:1410–1419

    Article  PubMed  CAS  Google Scholar 

  8. Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B (2012) Cell Mol Life Sci 69:1787–1797

    Article  PubMed  CAS  Google Scholar 

  9. Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011) Mitochondrion 11:369–381

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cohen DS, Pielak GJ (1995) J Am Chem Soc 117:1675–1677

    Article  CAS  Google Scholar 

  11. Berghuis AM, Guillemette JG, Mclendon G, Sherman F, Smith M, Brayer GD (1994) J Mol Biol 236:786–799

    Article  PubMed  CAS  Google Scholar 

  12. Theorell H, Åkesson Å (1941) J Am Chem Soc 63:1818–1820

    Article  CAS  Google Scholar 

  13. Kubitschek U, Dreybrodt W, Schweitzer-stenner R (1986) Spectros Lett 19:681–690

    Article  CAS  Google Scholar 

  14. Moore GR, Williams RJP (1980) Eur J Biochem 103:513–521

    Article  PubMed  CAS  Google Scholar 

  15. Wackerbarth H, Hildebrandt P (2003) Chem Phys Phys Chem 4:714–724

    CAS  Google Scholar 

  16. Myer YP (1968) Biochemistry 7:765–776

    Article  PubMed  CAS  Google Scholar 

  17. Filosa A, English AM (2000) J Biol Inorg Chem 5:448–454

    PubMed  CAS  Google Scholar 

  18. Assfalg M, Bertini I, Dolfi A, Turano P, Mauk AG, Rosell FI, Gray HB (2003) J Am Chem Soc 125:2913–2922

    Article  PubMed  CAS  Google Scholar 

  19. Taler G, Schejter A, Navon G, Vig I, Margoliash E (1995) Biochemistry 34:14209–14212

    Article  PubMed  CAS  Google Scholar 

  20. Hagarman A, Duitch L, Schweitzer-Stenner R (2008) Biochemistry 47:9667–9677

    Article  PubMed  CAS  Google Scholar 

  21. Cohen DS, Pielak GJ (1994) Protein Sci 3:1253–1260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Battistuzzi G, Borsari M, Dallari D, Lancellotti I, Sola M (1996) Eur J Biochem 241:208–214

    Article  PubMed  CAS  Google Scholar 

  23. Shah R, Schweitzer-Stenner R (2008) Biochemistry 47:5250–5257

    Article  PubMed  CAS  Google Scholar 

  24. Battistuzzi G, Borsari M, Loschi L, Martinelli A, Sola M (1999) Biochemistry 38:7900–7907

    Article  PubMed  CAS  Google Scholar 

  25. Battistuzzi G, Borsari M, Sola M (2001) Eur J Inorg Chem 2001:2989–3004

    Article  Google Scholar 

  26. Battistuzzi G, Loschi L, Borsari M, Sola M (1999) J Biol Inorg Chem 4:601–607

    Article  PubMed  CAS  Google Scholar 

  27. Banci L, Bertini I, Reddig T, Turano P (1998) E J Biochem 256:271–278

    Article  CAS  Google Scholar 

  28. Berners-Price SJ, Bertini I, Gray HB, Spyroulias GA, Turano P (2004) J Inorg Biochem 98:814–823

    Article  PubMed  CAS  Google Scholar 

  29. Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RMM (1966) Biochemistry 5:467–477

    Article  PubMed  CAS  Google Scholar 

  30. Dixon HBF, Mcintosh R (1967) Nature 213:399–400

    Article  PubMed  CAS  Google Scholar 

  31. Dixon HBF, Moret V (1965) Biochem J 94:463–469

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Linder RE, Records R, Barth G, Bunnenberg E, Djerassi C, Hedlund BE, Rosenberg A, Benson ES, Seamans L, Moscowitz A (1978) Anal Biochem 90:474–480

    Article  PubMed  CAS  Google Scholar 

  33. Van Gelder BF, Slater EC (1962) Biochim Biophysica Acta 58:593–595

    Article  CAS  Google Scholar 

  34. Karounis G, Unger E (1995) Multifit. Version 1:32

    Google Scholar 

  35. Schweitzer-Stenner R, Soffer JB, Toal S, Verbaro D (2012) Meth Mol Biol 895:315–346

    Article  CAS  Google Scholar 

  36. Theorell H (1941) J Am Chem Soc 63:1820–1827

    Article  CAS  Google Scholar 

  37. Theorell H, Akesson A (1941) J Am Chem Soc 63:1804–1811

    Article  CAS  Google Scholar 

  38. Theorell H, Åkesson Å (1941) J Am Chem Soc 63:1812–1818

    Article  CAS  Google Scholar 

  39. Schweitzer-Stenner R, Hagarman AM, Verbaro D, Soffer JB (2009) Meth Enzymol 466:109–153

    Article  PubMed  CAS  Google Scholar 

  40. Döpner S, Hildebrandt P, Rosell FI, Mauk AG (1998) J Am Chem Soc 120:11246–11255

    Article  Google Scholar 

  41. Rossel FI, Ferrer JC, Mauk AG (1998) J Am Chem Soc 120:11234–11245

    Article  Google Scholar 

  42. Blouin C, Guillemette JG, Wallace CJA (2001) Biophys J 81:2331–2338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Verbaro D, Hagarman A, Soffer JB, Schweitzer-Stenner R (2009) Biochemistry 48:2990–2996

    Article  PubMed  CAS  Google Scholar 

  44. Weinkam P, Zimmermann J, Sagle LB, Matsuda S, Dawson PE, Wolynes PG, Romesberg FE (2008) Biochemistry 47:13470–13480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Bandi S, Saritha B, Bowler BE (2007) Biochemistry 46:10643–10654

    Article  PubMed  CAS  Google Scholar 

  46. Alessi M, Hagarman AM, Soffer JB, Schweitzer-Stenner R (2011) J Raman Spectrosc 42:917–925

    Article  CAS  Google Scholar 

  47. Indiani C, de Sanctis G, Neri F, Santos H, Smulevich G, Coletta M (2000) Biochemistry 39:8234–8242

    Article  PubMed  CAS  Google Scholar 

  48. Uchiyama S, Hasegawa J, Tanimoto Y, Moriguchi H, Mizutani M, Igarashi Y, Sambongi Y, Kobayashi Y (2002) Prot Eng 15:445

    Article  Google Scholar 

  49. Uchiyama S, Ohshima A, Nakamura S, Hasegawa J, Terui N, Takayama S-IJ, Yamamoto Y, Sambongi Y, Kobayashi Y (2004) J Am Chem Soc 126:14684–14685

    Article  PubMed  Google Scholar 

  50. Pielak GJ, Auld DS, Beasley JR, Betz SF, Cohen DS, Doyle DF, Finger SA, Fredericks ZL, Hilgen-Willis S, Saunders AJ, Trojak SK (1995) Biochemistry 34:3268–3276

    Article  PubMed  CAS  Google Scholar 

  51. Lumry R, Rajender S (1970) Biopolymers 9:1125–1227

    Article  PubMed  CAS  Google Scholar 

  52. Krug RR, Hunter WG, Grieger RA (1976) Nature 261:566–567

    Article  CAS  Google Scholar 

  53. Beasley JR, Doyle DF, Chen L, Cohen DS, Fine BR, Pielak GJ (2002) Proteins 49:398–402

    Article  PubMed  CAS  Google Scholar 

  54. Liu L, Guo Q-X (2001) Chem Rev 101:673–696

    Article  PubMed  CAS  Google Scholar 

  55. Grunwald E, Steel C (1995) J Am Chem Soc 117:5687–5692

    Article  CAS  Google Scholar 

  56. Qian H, Hopfield JJ (1996) J Chem Phys 105:9292–9298

    Article  CAS  Google Scholar 

  57. Chodera JD, Mobley DL (2013) Annu Rev Biophys 42:121–142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Toal S, Amidi O, Schweitzer-Stenner R (2011) J Am Chem Soc 133:12728–12739

    Article  PubMed  CAS  Google Scholar 

  59. Liu L, Yang C, Giuo Q-X (2000) Biophys Chem 84:239–251

    Article  PubMed  CAS  Google Scholar 

  60. Ben-Naim A (2009) Molecular theory of water and aquesous solutions—Part I: understanding water. World Scientific, Singapore

    Book  Google Scholar 

  61. Krug RR, Hunter WG, Grieger RA (1976) J Phys Chem 80:2335–2341

    Article  CAS  Google Scholar 

  62. Milne JS, Xu Y, Mayne LC, Englander SW (1999) J Mol Biol 290:811–822

    Article  PubMed  CAS  Google Scholar 

  63. Balakrishnan G, Hu Y, Spiro TG (2012) J Am Chem Soc 134:19061–19069

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Dill KA, Shortle D (1991) Annu Rev Biochem 60:795–825

    Article  PubMed  CAS  Google Scholar 

  65. Uversky VN (2002) Prot Sci 11:739–756

    Article  CAS  Google Scholar 

  66. Filosa A, Ismail AA, English AM (1999) J Biol Inorg Chem 4:717–726

    PubMed  CAS  Google Scholar 

  67. Filosa A, Wang Y, Ismail AA, English AM (2001) Biochemistry 40:8256–8263

    Article  PubMed  CAS  Google Scholar 

  68. Tanford C (1968) Adv Prot Chem 23:121–282

    Article  CAS  Google Scholar 

  69. Hoang L, Maity H, Krishna MMG, Lin Y, Englander SW (2003) J Mol Biol 331:37–43

    Article  PubMed  CAS  Google Scholar 

  70. Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) Proc Natl Acad Sci USA 103:16623–16633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Kauzmann W (1959) Adv Prot Chem 14:1–63

    Article  CAS  Google Scholar 

  72. Dill KA (1990) Biochemistry 29:7133–7155

    Article  PubMed  CAS  Google Scholar 

  73. Miyashita Y, Wazawa T, Mogami G, Takahashi S, Sambongi Y (2013) Biophys J 104:163–172

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Toal SE, Verbaro DJ, Schweitzer-Stenner R (2014) J Phys Chem B 118:1309–1318

    Article  PubMed  CAS  Google Scholar 

  75. Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zacci G (1998) Proc Natl Acad Sci USA 95:2267–2272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Banci L, Bertini I, Gray HB, Luchinat C, Reddig T, Rosato A, Turano P (1997) Biochemistry 36:9867–9877

    Article  PubMed  CAS  Google Scholar 

  77. Schrödinger (2014) The PyMOL molecular graphics system, Version 1.7.1.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Schweitzer-Stenner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soffer, J.B., Schweitzer-Stenner, R. Near-exact enthalpy–entropy compensation governs the thermal unfolding of protonation states of oxidized cytochrome c . J Biol Inorg Chem 19, 1181–1194 (2014). https://doi.org/10.1007/s00775-014-1174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1174-x

Keywords

Navigation