Skip to main content
Log in

Ambidentate H-bonding by heme-bound NO: structural and spectral effects of –O versus –N H-bonding

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Resonance Raman studies have uncovered puzzling complexities in the structures of NO adducts of heme proteins. Although CO adducts of heme proteins obey well-behaved anti-correlations between Fe–C and C–O stretching frequencies, which reflect changes in backbonding induced by distal H-bonding residues, the corresponding NO data are scattered. This scatter can be traced to distal influences, since protein-free NO–hemes do show well-behaved anti-correlations. Why do distal effects produce irregularities in νFeN/νNO plots but not in νFeC/νCO plots? We show via density functional theory (DFT) computations on model systems that the response to distal H-bonding differs markedly when the NO acceptor atom is N versus O. Backbonding is augmented by H-bonding to O, but the effect of H-bonding to N is to weaken both N–O and N–Fe bonds. The resulting downward deviation from the νFeN/νNO backbonding line increases with increasing H-bond strength. This effect explains the deviations observed for a series of myoglobin variants, in which the strength of distal H-bonding is modulated by distal pocket residue substitutions. Most of the data follow a positive νFeN/νNO correlation with the same slope as that calculated for H-bonding to N. Such deviations are not observed for CO adducts, because the CO π* orbital is unoccupied, and serves as a delocalized acceptor of H-bonds. H-bonding to N primes NO–heme for reduction to the HNO adduct, a putative intermediate in NO-reducing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Notes

  1. Unlike CO and O2, NO also forms Fe(III)NO adducts, which have different vibrational trends [40]. These adducts generally auto-reduce to Fe(II)NO, but are sometimes quite stable, as in nitrophorins [41].

Abbreviations

DFT:

Density functional theory

EPR:

Electron paramagnetic spectroscopy

ImH:

Imidazole

Mb:

Myoglobin

NMeIm:

N-Methylimidazole

NRVS:

Nuclear resonance vibrational spectroscopy

P:

Porphine

RR:

Resonance Raman

TPP:

Tetraphenylporphine

XAFS:

X-ray absorption fine-structure

References

  1. Spiro TG, Wasbotten IH (2005) J Inorg Biochem 99:34–44

    Article  PubMed  CAS  Google Scholar 

  2. Park ES, Boxer SG (2002) J Phys Chem B 106:5800–5806

    Article  CAS  Google Scholar 

  3. Ibrahim M, Xu CL, Spiro TG (2006) J Am Chem Soc 128:16834–16845

    Article  PubMed  CAS  Google Scholar 

  4. Coyle CM, Vogel KM, Rush TS, Kozlowski PM, Williams R, Spiro TG, Dou Y, Ikeda-Saito M, Olson JS, Zgierski MZ (2003) Biochemistry 42:4896–4903

    Article  PubMed  CAS  Google Scholar 

  5. Lin R, Farmer PJ (2000) J Am Chem Soc 122:2393–2394

    Article  CAS  Google Scholar 

  6. Sulc F, Immoos CE, Pervitsky D, Farmer PJ (2004) J Am Chem Soc 126:1096–1101

    Article  PubMed  CAS  Google Scholar 

  7. Immoos CE, Sulc F, Farmer PJ, Czarnecki K, Bocian DF, Levina A, Aitken JB, Armstrong RS, Lay PA (2005) J Am Chem Soc 127:814–815

    Article  PubMed  CAS  Google Scholar 

  8. Frisch MJ et al. (2003) Gaussian 03. Gaussian, Inc., Pittsburgh, PA

  9. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  10. Praneeth VKK, Nather C, Peters G, Lehnert N (2006) Inorg Chem 45:2795–2811

    Article  PubMed  CAS  Google Scholar 

  11. Tangen E, Svadberg A, Ghosh A (2005) Inorg Chem 44:7802–7805

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Gossman W, Oldfield E (2003) J Am Chem Soc 125:16387–16396

    Article  PubMed  CAS  Google Scholar 

  13. Patchkovskii S, Ziegler T (2000) J Am Chem Soc 122:3506–3516

    Article  CAS  Google Scholar 

  14. Zeng WQ, Silvernail NJ, Wharton DC, Georgiev GY, Leu BM, Scheidt WR, Zhao JY, Sturhahn W, Alp EE, Sage JT (2005) J Am Chem Soc 127:11200–11201

    Article  PubMed  CAS  Google Scholar 

  15. Badger RM (1935) J Chem Phys 3:710–714

    Article  CAS  Google Scholar 

  16. Green MT (2006) J Am Chem Soc 128:1902–1906

    Article  PubMed  CAS  Google Scholar 

  17. Linder DP, Rodgers KR (2005) Inorg Chem 44:8259–8264

    Article  PubMed  CAS  Google Scholar 

  18. Lai HH, Li TS, Lyons DS, Phillips GN, Olson JS, Gibson QH (1995) Proteins 22:322–339

    Article  PubMed  CAS  Google Scholar 

  19. Karow DS, Pan DH, Tran R, Pellicena P, Presley A, Mathies RA, Marletta MA (2004) Biochemistry 43:10203–10211

    Article  PubMed  CAS  Google Scholar 

  20. Pellicena P, Karow DS, Boon EM, Marletta MA, Kuriyan J (2004) Proc Natl Acad Sci USA 101:12854–12859

    Article  PubMed  CAS  Google Scholar 

  21. Das TK, Wilson EK, Cutruzzola F, Brunori M, Rousseau DL (2001) Biochemistry 40:10774–10781

    Article  PubMed  CAS  Google Scholar 

  22. Nurizzo D, Cutruzzola F, Arese M, Bourgeois D, Brunori M, Cambillau C, Tegoni M (1998) Biochemistry 37:13987–13996

    Article  PubMed  CAS  Google Scholar 

  23. Nioche P, Berka V, Vipond J, Minton N, Tsai AL, Raman CS (2004) Science 306:1550–1553

    Article  PubMed  CAS  Google Scholar 

  24. Ghosh A (2005) Acc Chem Res 38:943–954

    Article  PubMed  CAS  Google Scholar 

  25. Franzen S (2002) J Am Chem Soc 124:13271–13281

    Article  PubMed  CAS  Google Scholar 

  26. Copeland DM, West AH, Richter-Addo GB (2003) Proteins 53:182–192

    Article  PubMed  CAS  Google Scholar 

  27. Copeland DM, SoareS AS, West AH, Richter-Addo GB (2006) J Inorg Biochem 100:1413–1425

    Article  PubMed  CAS  Google Scholar 

  28. Brucker EA, Olson JS, Ikeda-Saito M, Phillips GN (1998) Proteins 30:352–356

    Article  PubMed  CAS  Google Scholar 

  29. Rich AM, Armstrong RS, Ellis PJ, Lay PA (1998) J Am Chem Soc 120:10827–10836

    Article  CAS  Google Scholar 

  30. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2887

    Article  PubMed  CAS  Google Scholar 

  31. Paolocci N, Katori T, Champion HC, St John ME, Miranda KM, Fukuto JM, Wink DA, Kass DA (2003) Proc Natl Acad Sci USA 100:5537–5542

    Article  PubMed  CAS  Google Scholar 

  32. Miranda KM (2005) Coord Chem Rev 249:433–455

    Article  CAS  Google Scholar 

  33. Farmer PJ, Sulc F (2005) J Inorg Biochem 99:166–184

    Article  PubMed  CAS  Google Scholar 

  34. Rusche KM, Spiering MM, Marletta MA (1998) Biochemistry 37:15503–15512

    Article  PubMed  CAS  Google Scholar 

  35. Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F (2002) J Am Chem Soc 124:11737–11745

    Article  PubMed  CAS  Google Scholar 

  36. Averill BA (1996) Chem Rev 96:2951–2964

    Article  PubMed  CAS  Google Scholar 

  37. Sulc F, Fleischer E, Farmer PJ, Ma DJ, La Mar GN (2003) J Biol Inorg Chem 8:348–352

    PubMed  CAS  Google Scholar 

  38. Kachalova GS, Popov AN, Bartunik HD (1999) Science 284:473–476

    Article  PubMed  CAS  Google Scholar 

  39. Vojtechovsky J, Chu K, Berendzen J, Sweet RM, Schlichting I (1999) Biophys J 77:2153–2174

    Article  PubMed  CAS  Google Scholar 

  40. Linder DP, Rodgers KR, Banister J, Wyllie GRA, Ellison MK, Scheidt WR (2004) J Am Chem Soc 126:14136–14148

    Article  PubMed  CAS  Google Scholar 

  41. Walker FA (2005) J Inorg Biochem 99:216–236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM 33576 from the National Institute of General Medical Sciences. We thank Dr. Mohammed Ibrahim for helpful discussions and for assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Spiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Spiro, T.G. Ambidentate H-bonding by heme-bound NO: structural and spectral effects of –O versus –N H-bonding. J Biol Inorg Chem 13, 613–621 (2008). https://doi.org/10.1007/s00775-008-0349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0349-8

Keywords

Navigation