Skip to main content

Structure and Bonding in Heme–Nitrosyl Complexes and Implications for Biology

  • Chapter
  • First Online:
Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 154))

Abstract

This review summarizes our current understanding of the geometric and electronic structures of ferrous and ferric heme–nitrosyls, which are of key importance for the biological functions and transformations of NO. In-depth correlations are made between these properties and the reactivities of these species. Here, a focus is put on the discoveries that have been made in the last 10 years, but previous findings are also included as necessary. Besides this, ferrous heme–nitroxyl complexes are also considered, which have become of increasing interest recently due to their roles as intermediates in NO and multiheme nitrite reductases, and because of the potential role of HNO as a signaling molecule in mammals. In recent years, computational methods have received more attention as a means of investigating enzyme reaction mechanisms, and some important findings from these theoretical studies are also highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-MI:

2-Methylimidazole

3,5-Me-BAFP:

3,5-Methyl-bis(aryloxy)-fence porphyrin

4-MePip:

4-Methylpiperidine

5C:

Five-coordinate

6C:

Six-coordinate

CcNIR:

Multiheme cytochrome c nitrite reductase

CcO:

Cytochrome c oxidase

Cys:

Cysteine, cysteinate

Cyt c :

Cytochrome c

Deut2− :

Deuteroporphyrin IX dimethylester dianion

ENDOR:

Electron-nuclear double resonance spectroscopy

eNOS:

Endothelial nitric oxide synthase

EPR:

Electron paramagnetic resonance spectroscopy

Hb:

Hemoglobin

His:

Histidine

HNOX:

Heme-nitric oxide or oxygen binding (domain)

HOMO:

Highest occupied molecular orbital

HRP:

Horseradish peroxidase

hs:

High-spin

iNOS:

Inducible nitric oxide synthase

Iz:

Indazole

ls:

Low-spin

LUMO:

Lowest unoccupied molecular orbital

Mb:

Myoglobin

MCD:

Magnetic circular dichroism spectroscopy

MI:

1-Methylimidazole (also called N-methylimidazole)

MO:

Molecular orbital

NIR:

Nitrite reductase

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOD:

Nitric oxide dioxygenation

NOR:

Nitric oxide reductases

NorBC:

Bacterial respiratory NO reductase

NOS:

Nitric oxide synthase

Np:

Nitrophorins

NRVS:

Nuclear resonance vibrational spectroscopy

OEP2− :

Octaethylporphyrin dianion

OETPP2− :

Octaethyltetraphenylporphyin dianion

oxoOEC2− :

Oxooctaethylchlorin

P2− :

Porphine dianion

P450nor:

Fungal cytochrome P450 NO reductase

p-C6H4F :

4-Fluorophenyl anion

PCET:

Proton-coupled electron transfer

PES:

Potential energy surface

Prz:

Pyrazine

Py:

Pyridine

Pz:

Pyrazole

rNp:

Rhodnius prolixus nitrophorins

sGC:

Soluble guanylate cyclase

SOMO:

Singly occupied molecular orbital

To-F2PP2− :

Tetra(ortho-difluoro-phenyl)-porphyrin dianion

Tp-CF3PP2− :

Tetra(para-trifluoromethylphenyl)-porphyrin dianion

Tp-FPP2− :

Tetra(para-fluorophenyl)-porphyrin dianion

TpivPP2− :

Picket fence porphyrin

Tp-NO2PP2− :

Tetra(para-nitrophenyl)-porphyrin dianion

Tp-OCH3PP2− :

Tetra(para-methoxyphenyl)-porphyrin dianion

TPP*2− :

Phenyl-substituted tetraphenylporphyrin dianion

TPP2− :

Tetraphenylporphyrin dianion

TPPBr4 2− :

2,3,12,13-Tetrabromotetraphenylporphyrin dianion

References

  1. Kadish KM, Smith KM, Guilard R (2011) The handbook of porphyrin science. World Scientific, Hackensack

    Google Scholar 

  2. Cheng L, Richter-Addo GB (2000) Binding and activation of nitric oxide by metalloporphyrins and heme. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic, New York, Vol. 4, p 219

    Google Scholar 

  3. Lehnert N, Berto TC, Galinato MGI, Goodrich LE (2011) The role of heme-nitrosyls in the biosynthesis, transport, sensing, and detoxification of nitric oxide (NO) in biological systems: enzymes and model complexes. In: Kadish KM, Smith KM, Guilard R (eds) The handbook of porphyrin science. World Scientific, Hackensack, Vol. 14, p 1

    Google Scholar 

  4. Stuehr DJ (1997) Annu Rev Pharmacol Toxicol 37:339

    CAS  Google Scholar 

  5. Li H, Poulos T (2005) J Inorg Biochem 99:293

    CAS  Google Scholar 

  6. Rousseau DL, Li D, Couture M, Yeh S-R (2005) J Inorg Biochem 99:306

    CAS  Google Scholar 

  7. Martin NI, Woodward JJ, Winter MB, Beeson WT, Marletta MA (2007) J Am Chem Soc 129:12563

    CAS  Google Scholar 

  8. Gorren ACF, Mayer B (2007) Biochem Biophys Acta 1770:432

    CAS  Google Scholar 

  9. Cary SPL, Winger JA, Derbyshire ER, Marletta MA (2006) Trends Biochem Sci 31:231

    CAS  Google Scholar 

  10. Boon EM, Marletta MA (2005) Curr Opin Chem Biol 9:441

    CAS  Google Scholar 

  11. Galinato MGI, Fogle RS, III (2012) Trends Inorg Chem 13:1–22

    Google Scholar 

  12. Averill BA (1996) Chem Rev 96:2951

    CAS  Google Scholar 

  13. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO, Gladwin MT (2003) Nat Med 9:1498

    CAS  Google Scholar 

  14. Gladwin MT, Grubina R, Doyle MP (2009) Acc Chem Res 42:157

    CAS  Google Scholar 

  15. Castello PR, Woo DK, Ball K, Wojcik J, Liu L, Poyton RO (2008) Proc Natl Acad Sci USA 105:8203

    CAS  Google Scholar 

  16. Castello P, David P, McClure T, Crook Z, Poyton R (2006) Cell Metab 3:277

    CAS  Google Scholar 

  17. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) Cell 129:111

    CAS  Google Scholar 

  18. Gardner PR (2005) J Inorg Biochem 99:247

    CAS  Google Scholar 

  19. Su J, Groves JT (2010) Inorg Chem 49:6317

    CAS  Google Scholar 

  20. Su J, Groves JT (2009) J Am Chem Soc 131:12979

    CAS  Google Scholar 

  21. Kurtikyan TS, Eksuzyan SR, Hayrapetyan VA, Martirosyan GG, Hovhannisyan GS, Goodwin JA (2012) J Am Chem Soc 134:13861

    CAS  Google Scholar 

  22. Zumft WG (2005) J Inorg Biochem 99:194

    CAS  Google Scholar 

  23. Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y (2010) Science 330:1666

    CAS  Google Scholar 

  24. Daiber A, Shoun H, Ullrich V (2005) J Inorg Biochem 99:185

    CAS  Google Scholar 

  25. Ruggiero CE, Carrier SM, Tolman WB (1994) Angew Chem Int Ed Engl 33:895

    Google Scholar 

  26. Franz KJ, Lippard SJ (1998) J Am Chem Soc 120:9034

    CAS  Google Scholar 

  27. Merkle AC, Lehnert N (2012) Dalton Trans 41:3355

    CAS  Google Scholar 

  28. Walker FA (2005) J Inorg Biochem 99:216

    CAS  Google Scholar 

  29. Bianchetti CM, Blouin GC, Bitto E, Olson JS (2010) Proteins 78:917

    CAS  Google Scholar 

  30. Miranda KM (2005) Coord Chem Rev 249:433

    CAS  Google Scholar 

  31. Doctorovich F, Bikiel D, Pellegrino J, Suárez SA, Larsen A, Martí MA (2011) Coord Chem Rev 255:2764

    CAS  Google Scholar 

  32. Wyllie GRA, Scheidt WR (2002) Chem Rev 102:1067

    CAS  Google Scholar 

  33. Ford PC, Lorkovic IM (2002) Chem Rev 102:993

    CAS  Google Scholar 

  34. Wasser IM, de vries S, Moënne-Loccoz P, Schröder I, Karlin KD (2002) Chem Rev 102:1201

    CAS  Google Scholar 

  35. Ford PC, Laverman LE (2005) Coord Chem Rev 249:391

    CAS  Google Scholar 

  36. Walker FA, Simonis U (2005) Iron porphyrin chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry, 2nd edn. Wiley, Chichester, p 2390

    Google Scholar 

  37. Ghosh A (2005) J Inorg Biochem 99:1

    Google Scholar 

  38. Roncaroli F, Videla M, Slep LD, Olabe JA (2007) Coord Chem Rev 251:1903

    CAS  Google Scholar 

  39. Franke A, Roncaroli F, van Eldik R (2007) Eur J Inorg Chem773

    Google Scholar 

  40. Lehnert N, Scheidt WR (2010) Inorg Chem 49:6223

    CAS  Google Scholar 

  41. Ghosh Dey S, Dey A (2011) Dalton Trans 40:12633

    CAS  Google Scholar 

  42. Goodrich LE, Paulat F, Praneeth VKK, Lehnert N (2010) Inorg Chem 49:6293

    CAS  Google Scholar 

  43. Ghosh A, Hopmann KH, Conradie J (2009) Electronic structure calculations: transition metal–NO complexes. In: Solomon EI, King RB, Scott RA (eds) Computational inorganic and bioinorganic chemistry. Wiley, Chichester

    Google Scholar 

  44. Silvernail NJ, Olmstead MM, Noll BC, Scheidt WR (2009) Inorg Chem 48:971

    CAS  Google Scholar 

  45. Silvernail NJ, Pavlik JW, Noll BC, Schulz CE, Scheidt WR (2008) Inorg Chem 47:912

    CAS  Google Scholar 

  46. Silvernail NJ, Barabanschikov A, Sage JT, Noll BC, Scheidt WR (2009) J Am Chem Soc 131: 2131

    CAS  Google Scholar 

  47. Xu N, Campbell ALO, Powell DR, Khandogin J, Richter-Addo GB (2009) J Am Chem Soc 131:2460

    CAS  Google Scholar 

  48. Radoul M, Sundararajan M, Potapov A, Riplinger C, Neese F, Goldfarb D (2010) Phys Chem Chem Phys 12:7276

    CAS  Google Scholar 

  49. Gunn A, Derbyshire ER, Marletta MA, Britt RD (2012) Biochemistry 51:8384

    CAS  Google Scholar 

  50. Lehnert N, Sage JT, Silvernail NJ, Scheidt WR, Alp EE, Sturhahn W, Zhao J (2010) Inorg Chem 49:7197

    CAS  Google Scholar 

  51. Blomberg MRA, Sieghahn PEM (2012) Biochemistry 51:5173

    CAS  Google Scholar 

  52. Riplinger C, Neese F (2011) Chemphyschem 12:3192

    CAS  Google Scholar 

  53. Bykov D, Neese F (2012) J Biol Inorg Chem 17:741

    CAS  Google Scholar 

  54. Praneeth VKK, Paulat F, Berto TC, DeBeer George S, Näther C, Sulok CD, Lehnert N (2008) J Am Chem Soc 130:15288

    CAS  Google Scholar 

  55. Scheidt WR, Ellison MK (1999) Acc Chem Res 32:350

    CAS  Google Scholar 

  56. Scheidt WR, Reed CA (1981) Chem Rev 81:543

    CAS  Google Scholar 

  57. Scheidt WR, Frisse ME (1975) J Am Chem Soc 97:17

    CAS  Google Scholar 

  58. Ellison MK, Scheidt WR (1997) J Am Chem Soc 119:7404

    CAS  Google Scholar 

  59. Scheidt WR, Duval HF, Neal TJ, Ellison MK (2000) J Am Chem Soc 122:4651

    CAS  Google Scholar 

  60. Wyllie GRA, Scheidt WR (2003) Inorg Chem 42:4259

    CAS  Google Scholar 

  61. Nasri H, Haller KJ, Wang Y, Hyunh BH, Scheidt WR (1992) Inorg Chem 31:3459

    CAS  Google Scholar 

  62. Cheng L, Powell DR, Khan MA, Richter-Addo GB (2000) Chem Commun 2301

    Google Scholar 

  63. Wang J, Schopfer MP, Sarjeant AAN, Karlin KD (2009) J Am Chem Soc 131:450

    CAS  Google Scholar 

  64. Goodrich LE, Saikat R, Alp EE, Zhao J, Hu MY, Lehnert N (submitted)

    Google Scholar 

  65. Scheidt WR, Piciulo PL (1976) J Am Chem Soc 98:1913

    CAS  Google Scholar 

  66. Scheidt WR, Brinegar AC, Ferro EB, Kirner JF (1977) J Am Chem Soc 99:7315

    CAS  Google Scholar 

  67. Wyllie GRA, Schulz CE, Scheidt WR (2003) Inorg Chem 42:5722

    CAS  Google Scholar 

  68. Nasri H, Ellison MK, Huynh BH, Scheidt WR (1997) J Am Chem Soc 119:6274

    CAS  Google Scholar 

  69. Praneeth VKK, Näther C, Peters G, Lehnert N (2006) Inorg Chem 45:2795

    CAS  Google Scholar 

  70. Rath SP, Koerner R, Olmstead MM, Balch AL (2003) J Am Chem Soc 125:11798

    CAS  Google Scholar 

  71. Scheidt WR, Lee YJ, Hatano K (1984) J Am Chem Soc 106:3191

    CAS  Google Scholar 

  72. Ellison MK, Schulz CE, Scheidt WR (2000) Inorg Chem 39:5102

    CAS  Google Scholar 

  73. Linder DP, Rodgers KR, Banister J, Wyllie GRA, Ellison MK, Scheidt WR (2004) J Am Chem Soc 126:14136

    CAS  Google Scholar 

  74. Xu N, Powell DR, Cheng L, Richter-Addo GB (2006) Chem Commun 2030

    Google Scholar 

  75. Richter-Addo GB, Wheeler RA, Hixson CA, Chen L, Khan MA, Ellison MK, Schulz CE, Scheidt WR (2001) J Am Chem Soc 123:6314

    CAS  Google Scholar 

  76. Ellison MK, Schulz CE, Scheidt WR (1999) Inorg Chem 38:100

    CAS  Google Scholar 

  77. Ellison MK, Schulz CE, Scheidt WR (2002) J Am Chem Soc 124:13833

    CAS  Google Scholar 

  78. Ellison MK, Scheidt WR (1999) J Am Chem Soc 121:5210

    CAS  Google Scholar 

  79. Yi G-B, Chen L, Khan MA, Richter-Addo GB (1997) Inorg Chem 36:3876

    CAS  Google Scholar 

  80. Xu N, Powell DR, Richter-Addo GB (2011) Angew Chem Int Ed 50:9694

    CAS  Google Scholar 

  81. Xu N, Goodrich LE, Lehnert N, Powell DR, Richter-Addo GB (2013) Angew Chem Int Ed 52: asap (available online)

    Google Scholar 

  82. Scheidt WR, Hoard JL (1973) J Am Chem Soc 95:8281

    CAS  Google Scholar 

  83. Ellison MK, Scheidt WR (1998) Inorg Chem 37:382

    CAS  Google Scholar 

  84. Godbout N, Sanders LK, Salzmann R, Havlin RH, Wojdelski M, Oldfield E (1999) J Am Chem Soc 121:3829

    CAS  Google Scholar 

  85. Grande LM, Noll BC, Oliver AG, Scheidt WR (2010) Inorg Chem 49:6552

    CAS  Google Scholar 

  86. Scheidt WR, Hatano K, Rupprecht GA, Piciulo PL (1979) Inorg Chem 18:292

    CAS  Google Scholar 

  87. Zahran ZN, Jonghyuk L, Alguindigue SS, Khan MA, Richter-Addo GB (2004) Dalton Trans 44

    Google Scholar 

  88. Henry YA, Guissani A, Ducastel B (1997) Nitric oxide research from chemistry to biology: EPR spectroscopy of nitrosylated compounds. Landes Company, Austin

    Google Scholar 

  89. Lehnert N (2008) Electron paramagnetic resonance and low-temperature magnetic circular dichroism spectroscopy of ferrous heme nitrosyls. In: Ghosh A (ed) The smallest biomolecules: diatomics and their interactions with heme proteins. Elsevier, Amsterdam, p 147

    Google Scholar 

  90. Hayes RG, Ellison MK, Scheidt WR (2000) Inorg Chem 39:3665

    CAS  Google Scholar 

  91. Praneeth VKK, Neese F, Lehnert N (2005) Inorg Chem 44:2570

    CAS  Google Scholar 

  92. Patchkovskii S, Ziegler T (2000) Inorg Chem 39:5354

    CAS  Google Scholar 

  93. Berto TC, Praneeth VKK, Goodrich LE, Lehnert N (2009) J Am Chem Soc 131:17116

    CAS  Google Scholar 

  94. Utterback SG, Doetschman DC, Szumowski J, Rizos AK (1983) J Chem Phys 78:5874

    CAS  Google Scholar 

  95. Praneeth VKK, Haupt E, Lehnert N (2005) J Inorg Biochem 99:940

    CAS  Google Scholar 

  96. Radoul M, Bykov D, Rinaldo S, Cutruzzola F, Neese F, Goldfarb D (2011) J Am Chem Soc 133:3043

    CAS  Google Scholar 

  97. Neese F (2004) Magn Reson Chem 42:S187

    CAS  Google Scholar 

  98. Hori H, Ikeda-Saito M, Yonetani T (1981) J Biol Chem 256:7849

    CAS  Google Scholar 

  99. Morse RH, Chan SI (1980) J Biol Chem 255:7876

    CAS  Google Scholar 

  100. Copeland DM, Soares AS, West AH, Richter-Addo GB (2006) J Inorg Biochem 100:1413

    CAS  Google Scholar 

  101. Spiro TG, Ibrahim M, Wasbotten IH (2008) CO, NO, and O2 as vibrational probes of heme protein active sites. In: Ghosh A (ed) The smallest biomolecules: diatomics and their interactions with heme proteins. Elsevier, Amsterdam, p 95

    Google Scholar 

  102. Vogel KM, Kozlowski PM, Zgierski MZ, Spiro TG (1999) J Am Chem Soc 121:9915

    CAS  Google Scholar 

  103. Lehnert N, Galinato MGI, Paulat F, Richter-Addo GB, Sturhahn W, Xu N, Zhao J (2010) Inorg Chem 49:4133

    CAS  Google Scholar 

  104. Leu BM, Zgierski MZ, Wyllie GRA, Scheidt WR, Sturhahn W, Alp EE, Durbin SM, Sage JT (2004) J Am Chem Soc 126:4211

    CAS  Google Scholar 

  105. Pavlik JW, Barabanschikov A, Oliver AG, Alp EE, Sturhahn W, Zhao J, Sage JT, Scheidt WR (2010) Angew Chem Int Ed 49:4400

    CAS  Google Scholar 

  106. Scheidt WR, Durbin SM, Sage JT (2005) J Inorg Biochem 99:60

    CAS  Google Scholar 

  107. Chottard G, Mansuy D (1977) Biochem Biophys Res Commun 77:1333

    CAS  Google Scholar 

  108. Stong JD, Burke JM, Daly P, Wright P, Spiro TG (1980) J Am Chem Soc 102:5815

    CAS  Google Scholar 

  109. Tsubaki M, Yu NT (1982) Biochemistry 21:1140

    CAS  Google Scholar 

  110. Benko B, Yu NT (1983) Proc Natl Acad Sci USA 80:7042

    CAS  Google Scholar 

  111. Tomita T, Hirota S, Ogura T, Olson JS, Kitagawa T (1999) J Phys Chem B 103:7044

    CAS  Google Scholar 

  112. Coyle CM, Vogel KM, Rush TS III, Kozlowski PM, Williams R, Spiro TG, Dou Y, Ikeda-Saito M, Olson JS, Zgierski MZ (2003) Biochemistry 42:4896

    CAS  Google Scholar 

  113. Zeng W, Silvernail NJ, Wharton DC, Georgiev GY, Leu BM, Scheidt WR, Zhao J, Sturhahn W, Alp EE, Sage JT (2005) J Am Chem Soc 125:11200

    Google Scholar 

  114. Silvernail NJ, Barabanschikov A, Pavlik JW, Noll BC, Zhao J, Alp EE, Sturhahn W, Sage JT, Scheidt WR (2007) J Am Chem Soc 129:2200

    CAS  Google Scholar 

  115. Paulat F, Berto TC, DeBeer George S, Goodrich LE, Praneeth VKK, Sulok CD, Lehnert N (2008) Inorg Chem 47:11449

    CAS  Google Scholar 

  116. Spiro TG, Wasbotten IH (2005) J Inorg Biochem 99:34

    CAS  Google Scholar 

  117. Ray GB, Li X-Y, Ibers JA, Sessler JL, Spiro TG (1994) J Am Chem Soc 116:162

    CAS  Google Scholar 

  118. Ibrahim M, Xu C, Spiro TG (2006) J Am Chem Soc 128:16834

    CAS  Google Scholar 

  119. Hayashi T, Miner KD, Yeung N, Lin Y-W, Lu Y, Moënne-Loccoz P (2011) Biochemistry 50: 5939

    CAS  Google Scholar 

  120. He C, Neya S, Knipp M (2011) Biochemistry 50:8559

    CAS  Google Scholar 

  121. Tangen E, Svadberg A, Ghosh A (2005) Inorg Chem 44:7802

    CAS  Google Scholar 

  122. Soldatova AV, Ibrahim M, Olson JS, Czernuszewicz RS, Spiro TG (2010) J Am Chem Soc 132:4614

    CAS  Google Scholar 

  123. Xu C, Spiro TG (2008) J Biol Inorg Chem 13:613

    CAS  Google Scholar 

  124. Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, Lei L, Miner KD, Robinson H, Lu Y (2009) Nature 462:1079

    CAS  Google Scholar 

  125. Hu S, Kincaid JR (1991) J Am Chem Soc 113:9760

    CAS  Google Scholar 

  126. Lehnert N, Praneeth VKK, Paulat F (2006) J Comput Chem 27:1338

    CAS  Google Scholar 

  127. Zilberberg I, Ruzankin SP (2004) Chem Phys Lett 394:165

    CAS  Google Scholar 

  128. Zilberberg I, Ruzankin SP, Malykhin S, Zhidomirov GM (2004) Chem Phys Lett 394:392

    CAS  Google Scholar 

  129. Cooper CE (1999) Biochim Biophys Acta 1411:290

    CAS  Google Scholar 

  130. Miller LM, Pedraza AJ, Chance MR (1997) Biochemistry 36:12199

    CAS  Google Scholar 

  131. Tomita T, Haruta N, Aki M, Kitagawa T, Ikeda-Saito M (2001) J Am Chem Soc 123:2666

    CAS  Google Scholar 

  132. Ding XD, Weichsel A, Andersen JF, Shokhireva TK, Balfour C, Pierik AJ, Averill BA, Montfort WR, Walker FA (1999) J Am Chem Soc 121:128

    CAS  Google Scholar 

  133. Maes EM, Walker FA, Montfort WR, Czernuszewicz RS (2001) J Am Chem Soc 123:11664

    CAS  Google Scholar 

  134. Moeser B, Janoschka A, Wolny JA, Paulsen H, Filippov I, Berry RE, Zhang H, Chumakov AI, Walker FA, Schünemann V (2012) J Am Chem Soc 134:4216

    CAS  Google Scholar 

  135. Obayashi E, Tsukamoto K, Adachi S, Takahashi S, Nomura M, Iizuka T, Shoun H, Shiro Y (1997) J Am Chem Soc 119:7807

    CAS  Google Scholar 

  136. Hu S, Kincaid JR (1993) J Biol Chem 268:6189

    CAS  Google Scholar 

  137. Paulat F, Lehnert N (2007) Inorg Chem 46:1547

    CAS  Google Scholar 

  138. Kadish KM, Lançon D, Cocolios P, Guilard R (1984) Inorg Chem 23:2372

    CAS  Google Scholar 

  139. Guilard R, Lagrange G, Tabard A, Lancon D, Kadish KM (1985) Inorg Chem 24:3649

    CAS  Google Scholar 

  140. Hodge SJ, Wang L-S, Khan MA, Young VGJ, Richter-Addo GB (1996) Chem Commun 2283

    Google Scholar 

  141. Cheng L, Chen L, Chung H-S, Khan MA, Richter-Addo GB, Young VGJ (1998) Organometallics 17:3853

    CAS  Google Scholar 

  142. Xu N, Lilly J, Powell DR, Richter-Addo GB (2012) Organometallics 31:827

    CAS  Google Scholar 

  143. Zaczek MB, Zareba AA, Czernuszewicz RS, Montfort WR (2006) J Porphyrins Phthalocyanines 10:928

    Google Scholar 

  144. Pinakoulaki E, Gemeinhardt S, Saraste M, Varotsis C (2002) J Biol Chem 277:23407

    CAS  Google Scholar 

  145. Collman JP, Yang Y, Dey A, Decreau RA, Ghosh S, Ohta T, Solomon EI (2008) Proc Natl Acad Sci USA 105:15660

    CAS  Google Scholar 

  146. Hu C, Sulok CD, Paulat F, Lehnert N, Zatsman AI, Hendrich MP, Schulz CE, Scheidt WR (2010) J Am Chem Soc 132:3737

    CAS  Google Scholar 

  147. Enemark JH, Feltham RD (1974) Coord Chem Rev 13:339

    CAS  Google Scholar 

  148. Jørgensen CK (1966) Coord Chem Rev 1:164

    Google Scholar 

  149. Mingos DMP (1973) Inorg Chem 12:1209

    CAS  Google Scholar 

  150. Hoffmann R, Chen MML, Elian M, Rossi AR, Mingos DMP (1974) Inorg Chem 13:2666

    CAS  Google Scholar 

  151. Conradie J, Ghosh A (2007) J Phys Chem B 111:12621

    CAS  Google Scholar 

  152. Radon M, Pierloot K (2008) J Phys Chem A 112:11824

    CAS  Google Scholar 

  153. Radon M, Broclawik E, Pierloot K (2010) J Phys Chem B 114:1518

    CAS  Google Scholar 

  154. Boguslawski K, Jacob CR, Reiher M (2011) J Chem Theory Comput 7:2740

    CAS  Google Scholar 

  155. Siegbahn PEM, Blomberg MRA, Chen S-L (2010) J Chem Theory Comput 6:2014

    Google Scholar 

  156. Goodrich LE, Lehnert N (2013) J Inorg Biochem 118:179

    CAS  Google Scholar 

  157. Fujisawa K, Tateda A, Miyashita Y, Okamoto K, Paulat F, Praneeth VKK, Merkle A, Lehnert N (2008) J Am Chem Soc 130:1205

    CAS  Google Scholar 

  158. Merkle AC, Fry NL, Mascharak PK, Lehnert N (2011) Inorg Chem 50:12192–12203

    CAS  Google Scholar 

  159. Traylor TG, Sharma VS (1992) Biochemistry 31:2847

    CAS  Google Scholar 

  160. Leu BM, Silvernail NJ, Zgierski MZ, Wyllie GRA, Ellison MK, Scheidt WR, Zhao J, Sturhahn W, Alp EE, Sage JT (2007) Biophys J 92:3764

    CAS  Google Scholar 

  161. Choi I-K, Liu Y, Feng D, Paeng K-J, Ryan MD (1991) Inorg Chem 30:1832

    CAS  Google Scholar 

  162. Lahiri GK, Kaim W (2010) Dalton Trans 39:4471

    CAS  Google Scholar 

  163. Zhang Y, Gossman W, Oldfield E (2003) J Am Chem Soc 125:16387

    CAS  Google Scholar 

  164. Perutz MF, Kilmartin JV, Nagai K, Szabo A, Simon SR (1976) Biochemistry 15:378

    CAS  Google Scholar 

  165. Zhao Y, Brandish PE, Ballou DP, Marletta MA (1999) Proc Natl Acad Sci USA 96:14753

    CAS  Google Scholar 

  166. Muralidharan S, Boon EM (2012) J Am Chem Soc 134:2044–2046

    CAS  Google Scholar 

  167. Girsch P, de Vries S (1997) Biochim Biophys Acta 1318:202

    CAS  Google Scholar 

  168. Berto TC, Hoffman MB, Murata Y, Landenberger KB, Alp EE, Zhao J, Lehnert N (2011) J Am Chem Soc 133:16714

    CAS  Google Scholar 

  169. Berto TC, Speelman A, Zheng S, Lehnert N (2013) Coord Chem Rev 257:244

    CAS  Google Scholar 

  170. Arikawa Y, Onishi M (2012) Coord Chem Rev 256:468

    CAS  Google Scholar 

  171. Arikawa Y, Asayama T, Moriguchi Y, Agari S, Onishi M (2007) J Am Chem Soc 129:14160

    CAS  Google Scholar 

  172. Wright AM, Wu G, Hayton TW (2012) J Am Chem Soc 134:9930–9933

    CAS  Google Scholar 

  173. Gans P (1967) J Chem Soc A 943

    Google Scholar 

  174. Hoskins BF, Whillans FD, Dale DH, Hodgkin DC (1969) J Chem Soc Chem Commun 69

    Google Scholar 

  175. Villalba MEC, Navaza A, Güida JA, Varetti EL, Aymonino PJ (2006) Inorg Chim Acta 359: 707

    CAS  Google Scholar 

  176. Ford PC, Fernandez BO, Lim MD (2005) Chem Rev 105:2439

    CAS  Google Scholar 

  177. Kozlov A, Constantino G, Sobhian B, Szalay L, Umar F, Nohl H, Bahrami S, Redl H (2005) Antioxid Redox Signal 7:515

    CAS  Google Scholar 

  178. Shimizu H, Park S-Y, Gomi Y, Arakawa H, Nakamura H, Adachi S-I, Obayashi E, Iizuka T, Shoun H, Shiro Y (2000) J Biol Chem 275:4816

    CAS  Google Scholar 

  179. Lançon D, Kadish KM (1983) J Am Chem Soc 105:5610

    Google Scholar 

  180. Pellegrino J, Bari SE, Bikiel DE, Doctorovich F (2010) J Am Chem Soc 132:989

    CAS  Google Scholar 

  181. Olson LW, Schaeper D, Lancon D, Kadish KM (1982) J Am Chem Soc 104:2042

    CAS  Google Scholar 

  182. Wei Z, Ryan MD (2010) Inorg Chem 49:6948

    CAS  Google Scholar 

  183. Pellegrino J, Hübner R, Doctorovich F, Kaim W (2011) Chem Eur J 17:7868

    CAS  Google Scholar 

  184. Kumar MR, Fukuto JM, Miranda KM, Farmer PJ (2010) Inorg Chem 49:6283

    CAS  Google Scholar 

  185. Farmer PJ, Sulc F (2005) J Inorg Biochem 99:166

    CAS  Google Scholar 

  186. Bayachou M, Lin R, Cho W, Farmer PJ (1998) J Am Chem Soc 120:9888

    CAS  Google Scholar 

  187. Guo M, Sulc F, Ribbe MW, Immoos CE, Farmer PJ, Burgess BK (2002) J Am Chem Soc 124: 12100

    CAS  Google Scholar 

  188. Yang L, Ling Y, Zhang Y (2011) J Am Chem Soc 133:13814

    CAS  Google Scholar 

  189. Sulc F, Fleischer E, Farmer PJ, Ma DJ, La Mar GN (2003) J Biol Inorg Chem 8:348

    CAS  Google Scholar 

  190. Immoos CE, Sulc F, Farmer PJ, Czarnecki K, Bocian DF, Levina A, Aitken JB, Armstrong RS, Lay PA (2005) J Am Chem Soc 127:814

    CAS  Google Scholar 

  191. Ling Y, Mills C, Weber R, Yang L, Zhang Y (2010) J Am Chem Soc 132:1583

    CAS  Google Scholar 

  192. Miller TW, Cherney MM, Lee AJ, Francoleon NE, Farmer PJ, King SB, Hobbs AJ, Miranda KM, Burstyn JN, Fukuto JM (2009) J Biol Chem 284:21788

    CAS  Google Scholar 

  193. Shiro Y, Fujii M, Iizuka T, Adachi S, Tsukamoto K, Nakahara K, Shoun H (1995) J Biol Chem 270:1617

    CAS  Google Scholar 

  194. Daiber A, Nauser T, Takaya N, Kudo T, Weber P, Hultschig C, Shoun H, Ullrich V (2002) J Inorg Biochem 88:343

    CAS  Google Scholar 

  195. Yi J, Morrow BH, Campbell ALOC, Shen JK, Richter-Addo GB (2012) Chem Commun 48: 9041

    CAS  Google Scholar 

  196. Flock U, Reimann J (2006) Biochem Soc Trans 34:188

    CAS  Google Scholar 

  197. Fritz G, Einsle O, Rudolf M, Schiffer A, Kroneck PMH (2005) J Mol Microbiol Biotechnol 10:223

    CAS  Google Scholar 

  198. Clarke TA, Hemmings AM, Burlat B, Butt JN, Cole JA, Richardson DJ (2006) Biochem Soc Trans 34:143

    CAS  Google Scholar 

  199. Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F (2002) J Am Chem Soc 124: 11737

    CAS  Google Scholar 

  200. Marritt SJ, Kemp GL, Xiaoe L, Durran JR, Cheesman MR, Butt JN (2008) J Am Chem Soc 130:8588

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolai Lehnert or W. Robert Scheidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lehnert, N., Scheidt, W.R., Wolf, M.W. (2013). Structure and Bonding in Heme–Nitrosyl Complexes and Implications for Biology. In: Mingos, D. (eds) Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II. Structure and Bonding, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_92

Download citation

Publish with us

Policies and ethics