Skip to main content
Log in

QM/MM theoretical study of the pentacoordinate Mn(III) and resting states of manganese-reconstituted cytochrome P450cam

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Quantum mechanical/molecular mechanical (QM/MM) theoretical calculations were performed for the pentacoordinate Mn(III) and water-bound resting states of the Mn-reconstituted mutant of cytochrome P450cam (Mn-P450cam) in order to obtain insights into their characters, especially, their spin state ordering. The QM/MM study was carried out by use of the B3LYP and BLYP density functional theory (DFT) methods coupled to the CHARMM force field. Although the relative energies of possible spin states for the Mn-P450cam species varied depending on the functional, this dependence was less significant compared with previous calculations on the corresponding intermediates of wild-type P450cam. The results suggested that both Mn-P450cam intermediates have quintet ground states. Additional time-dependent DFT (TDDFT) calculations were carried out for the quintet states of these species using the B3LYP and BP86 functionals with the electrostatic environmental effect included. The TDDFT results enabled us to assign the origins of the peaks observed in optical absorption spectra (Makris et al. in J. Inorg. Biochem. 100:507–518, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  2. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    Article  PubMed  CAS  Google Scholar 

  3. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328

    Article  PubMed  CAS  Google Scholar 

  4. Groves GT (2006) J Inorg Biochem 100:434–447

    Article  PubMed  CAS  Google Scholar 

  5. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622

    Article  PubMed  Google Scholar 

  6. Newcomb M, Toy PH (2000) Acc Chem Res 33:449–455

    Article  PubMed  CAS  Google Scholar 

  7. Makris TM, von Koenig K, Schlichting I, Sligar SG (2006) J Inorg Biochem 100:507–518

    Article  PubMed  CAS  Google Scholar 

  8. Gelb MH, Toscano WA Jr, Sligar SG (1982) Proc Natl Acad Sci USA 79:5578–5762

    Article  Google Scholar 

  9. Jaguar 5.5 (2004) Schrödinger Inc., Portland

  10. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  11. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  12. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  14. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  15. Hay JP, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  16. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao Y (1999) J Phys Chem A 103:1913–1928

    Article  CAS  Google Scholar 

  17. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  18. Altun A, Thiel W (2005) J Phys Chem B 109:1268–1280

    Article  PubMed  CAS  Google Scholar 

  19. Schöneboom JC, Thiel W (2004) J Phys Chem B 108:7468–7478

    Article  CAS  Google Scholar 

  20. Schöneboom JC, Lin H, Reuter N, Thiel W, Cohen S, Ogliaro F, Shaik S (2002) J Am Chem Soc 124:8142–8151

    Article  PubMed  CAS  Google Scholar 

  21. Van Gunsteren WF, Berendsen HHC (1977) Mol Phys 34:1311

    Article  Google Scholar 

  22. Ahlrichs R, Bar M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  23. Ahlrichs R et al (2002) TURBOMOLE 55. University of Karlsruhe, Karlsruhe

  24. Smith W, Forester TR (1996) J Mol Graph 14:136–141

    Article  PubMed  CAS  Google Scholar 

  25. Billeter SR, Turner AJ, Thiel W (2000) Phys Chem Chem Phys 2:2177–2186

    Article  CAS  Google Scholar 

  26. Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ, Billeter S, Terstegen F, Thiel S, Kendrick J, Rogers SC, Casci J, Watson M, King F, Karlsen E, Sjøvoll M, Fahmi A, Schäfer A, Lennartz C (2003) J Mol Struct Theochem 632:1–28

    Article  CAS  Google Scholar 

  27. Ghosh A (2006) J Biol Inorg Chem 11:711–724

    Google Scholar 

  28. Harvey JN (2006) Annu Rep Prog Chem C 102:203–226

    Article  CAS  Google Scholar 

  29. Fouqueau A, Casida ME, Lawson Daku LM, Houser A, Neese F (2005) J Chem Phys 122:044110/1–044110/13

    Article  CAS  Google Scholar 

  30. Debrunner PG (1989) In: Lever ABP, Gray HB (eds) Iron porphyrins part 3. Physical bioinorganic chemistry series, vol 4. VCH, New York

  31. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) J Am Chem Soc 123:1403–1415

    Article  PubMed  CAS  Google Scholar 

  32. Lipscomb JD (1980) Biochemistry 19:3590–3599

    Article  PubMed  CAS  Google Scholar 

  33. Dawson JH, Sono M (1987) Chem Rev 87:1255–1276

    Article  CAS  Google Scholar 

  34. Sharrock M, Debrunner PG, Schulz C, Liscomb JD, Marshall V, Gunsalus IC (1976) Biochim Biophys Acta 426:8

    Google Scholar 

  35. Tsai R, Ru CA, Gunsalus IC, Peisach J, Blumberg W, Orme-Johnson WH, Beinert H (1970) Proc Natl Acad Sci USA 66:1157–1163

    Article  PubMed  CAS  Google Scholar 

  36. Sligar SG (1976) Biochemistry 15:5399–5406

    Article  PubMed  CAS  Google Scholar 

  37. Sligar SG, Gunsalus IC (1979) Biochemistry 18:2290–2295

    Article  PubMed  CAS  Google Scholar 

  38. Horitani M, Yashiro H, Hagiwara M, Hori H (2007) J Inorg Biochem. doi:10.1016/j.jinorgbio.2007.11.015 (in press)

  39. Nguyen KA, Pachter R (2001) J Chem Phys 114:10757–10767

    Article  CAS  Google Scholar 

  40. Kozlowski PM, Kuta J, Ohta T, Kitagawa TJ (2006) Inorg Biochem 100:744–750

    Article  CAS  Google Scholar 

  41. Gouterman M (1961) J Mol Spectrosc 16:138–163

    Article  Google Scholar 

Download references

Acknowledgments

The research of S.S. at the Hebrew University of Jerusalem is supported by an ISF grant. H.H. is a JSPS Postdoctoral Fellow for Research Abroad. Ilme Schlichting and Konstanze von König are acknowledged for early access to the PDB structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sason Shaik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_340_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirao, H., Cho, KB. & Shaik, S. QM/MM theoretical study of the pentacoordinate Mn(III) and resting states of manganese-reconstituted cytochrome P450cam . J Biol Inorg Chem 13, 521–530 (2008). https://doi.org/10.1007/s00775-007-0340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0340-9

Keywords

Navigation