Skip to main content
Log in

Spectral features of the ferrous–CO complex in cytochrome P450: a revisit using TDDFT calculations

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

There are different views in the literature regarding how to interpret the observed spectral features of the ferrous–CO complexes in cytochrome P450 enzymes (P450s). In this work, we applied density functional theory (DFT) and time-dependent DFT (TDDFT) calculations at the B3LYP-D3BJ/def2-TZVP level with a CPCM correction to the ferrous–CO models of P450s as well as of proteins that contain a histidine-ligated heme. Our results support the notion derived from a previously reported iterative extended Hückel calculation that the involvement of the sulfur lone-pair orbital (S(nz)) of the axial cysteine ligand in the electronic excitations gives rise to a spectral anomaly. The Q and the shorter-wavelength Soret (B′) peaks are primarily due to the electronic transitions from the a2u- and S(nz)-type molecular orbitals (MOs), generated via an orbital interaction of fragment orbitals, to the near-degenerate eg-type π* MOs, respectively. The transitions from the a1u-type MO to the eg-type MOs contribute most to the longer wavelength Soret (B) peaks. Both a2u- and S(nz)-type MOs contribute to the B peaks, but the contribution of the latter is greater. When the axial ligand is histidine, the Q and Soret peaks originate essentially from the excitations from the a2u- and a1u-type MOs to the eg-type MOs. The transitions from the b2u-type MOs to the eg-type MOs play the most significant role in the N peaks of such ferrous–CO complexes. Here, the b2u-type MOs have a large contribution from the imidazole π orbital.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

Data availability

The data for reproducing the results presented in this paper can be found in the Supplementary Information.

References

  1. Correia MA, Hollenberg PF (2015). In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 4th edn. Springer, New York

    Google Scholar 

  2. Klingenberg M (1958) Pigments of rat liver microsomes. Arch Biochem Biophys 75:376–386

    Article  CAS  PubMed  Google Scholar 

  3. Omura T, Sato R (1962) A new cytochrome in liver microsomes. J Biol Chem 237:PC1375–PC1376

    Article  Google Scholar 

  4. Makinen MW, Eaton WA (1973) Polarized single crystal absorption spectra of carboxy- and oxyhemoglobin. Ann N Y Acad Sci 206:210–222

    Article  CAS  PubMed  Google Scholar 

  5. Hanson LK, Eaton WA, Sligar SG, Gunsalus IC, Gouterman M, Connell CR (1976) Origin of the anomalous Soret spectra of carboxycytochrome P-450. J Am Chem Soc 98:2672–2674

    Article  CAS  PubMed  Google Scholar 

  6. Hanson LK, Sligar SG, Gunsalus IC (1977) Electronic structure of cytochrome P450. Croat Chem Acta 49:237–250

    CAS  Google Scholar 

  7. Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  8. Jung C, Ristau O (1977) Quantum-chemical interpretation of the unusual absorption spectrum of the cytochrome P-450–CO complex. Chem Phys Lett 49:103–108

    Article  CAS  Google Scholar 

  9. Jung C (1985) Quantum chemical explanation of the “hyper” spectrum of the carbon monoxide complex of cytochrome P-450. Chem Phys Lett 113:589–596

    Article  CAS  Google Scholar 

  10. Loew GH, Rohmer MM (1980) Electronic spectra of model oxy, carboxy P450, and carboxy heme complexes. J Am Chem Soc 102:3655–3657

    Article  CAS  Google Scholar 

  11. Loew GH, Goldblum A (1980) Electronic spectrum of model cytochrome P450 complex with postulated carbene metabolite of halothane. J Am Chem Soc 102:3657–3659

    Article  CAS  Google Scholar 

  12. Loew GH, Herman ZS, Rohmer MM, Goldblum A, Pudzianowski A (1981) Structure, spectra, and function of model cytochrome P450. Ann N Y Acad Sci 367:192–218

    Article  CAS  PubMed  Google Scholar 

  13. Loew G (2000) Structure, spectra, and function of heme sites. Int J Quantum Chem 77:54–70

    Article  CAS  Google Scholar 

  14. Miyahara T, Tokita Y, Nakatsuji H (2001) SAC/SAC−CI study of the ground, excited, and ionized states of cytochromes P450CO. J Phys Chem B 105:7341–7352

    Article  CAS  Google Scholar 

  15. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  16. Seidl A, Görling A, Vogl P, Majewski JA, Levy M (1996) Generalized Kohn-Sham schemes and the band-gap problem. Phys Rev B 53:3764–3774

    Article  CAS  Google Scholar 

  17. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  18. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  22. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  23. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  24. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101–154111

    Article  PubMed  Google Scholar 

  25. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Xia S, Yue D, Sun H, Hirao H (2022) The bonding nature of Fe–CO complexes in heme proteins. Inorg Chem 61:17494–17504

    Article  CAS  PubMed  Google Scholar 

  27. Raag R, Poulos TL (1989) Crystal structure of the carbon monoxide-substrate-cytochrome P-450CAM ternary complex. Biochemistry 28:7586–7592

    Article  CAS  PubMed  Google Scholar 

  28. Nagano S, Tosha T, Ishimori K, Morishima I, Poulos TL (2004) Crystal structure of the cytochrome P450cam mutant that exhibits the same spectral perturbations induced by putidaredoxin binding. J Biol Chem 279:42844–42849

    Article  CAS  PubMed  Google Scholar 

  29. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  30. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  31. Gaussian 16, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  32. Shaik S, Hirao H, Kumar D (2007) Reactivity patterns of cytochrome P450 enzymes: multifunctionality of the active species, and the two states-two oxidants conundrum. Nat Prod Rep 24:533–552

    Article  CAS  PubMed  Google Scholar 

  33. Shaik S, Hirao H, Kumar D (2007) Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states. Acc Chem Res 40:532–542

    Article  CAS  PubMed  Google Scholar 

  34. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) P450 enzymes: their structure, reactivity, and selectivity - modeled by QM/MM calculations. Chem Rev 110:949–1017

    Article  CAS  PubMed  Google Scholar 

  35. Nakatsuji H, Tokita Y, Hasegawa J, Hada M (1996) Ground and excited states of carboxyheme: a SAC/SAC-CI study. Chem Phys Lett 256:220–228

    Article  CAS  Google Scholar 

  36. Tokita Y, Nakatsuji H (1997) Ground and excited states of hemoglobin CO and horseradish peroxidase CO: SAC/SAC-CI study. J Phys Chem B 101:3281–3289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.H. gratefully acknowledges a Changjiang Scholarship (2022TA0006), a university development fund (UDF01001996), and a Warshel Institute for Computational Biology fund (C10120180043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Hirao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 159 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirao, H., Xia, S. & Liu, S. Spectral features of the ferrous–CO complex in cytochrome P450: a revisit using TDDFT calculations. J Biol Inorg Chem 28, 57–64 (2023). https://doi.org/10.1007/s00775-022-01985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01985-w

Keywords

Navigation