Skip to main content
Log in

Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bis(allixinato)oxovanadium(IV), VO(alx)2 (alx is 3-hydroxy-5-methoxy-6-methyl-2-pentyl-4-pyrone), has been reported to act as an antidiabetic agent in streptozotocin-induced type-1-like and obesity-linked KKAy type 2 diabetic model mice. VO(alx)2 is also proposed as a candidate agent for treating metabolic syndromes in animals. However, its functional mechanism is yet to be clarified. In this study, we examined whether VO(alx)2 contributes to both the activation of the insulin signaling cascade that activates glucose transporter 4 (GLUT4) translocation and the regulation of the forkhead box O1 (FoxO1) transcription factor that controls the gene transcription of gluconeogenesis genes. The following three important results were obtained: (1) intracellular vanadium concentration in 3T3-L1 adipocytes is higher after treatment with VO(alx)2 than with VOSO4; (2) VO(alx)2 stimulates the translocation of GLUT4 to the plasma membrane following activation of the tyrosine phosphorylation of the insulin receptor β-subunit (IRβ) and insulin receptor substrate (IRS) as well as Akt kinase in 3T3-L1 adipocytes; and (3) the mechanism of inhibition of glucose-6-phosphatase (G6Pase) catalytic subunit gene expression by vanadium is due to disruption of FoxO1 binding with the G6Pase promoter, which indicates that FoxO1 is phosphorylated by VO(alx)2-stimulated Akt in HepG2 cells. On the basis of these results, we propose that the critical functions of VO(alx)2 involve the activation of phosphatidylinositol 3-kinase–Akt signaling through the enhancement of tyrosine phosphorylation of IRβ and IRS, which in turn transmits the signal to activate GLUT4 translocation, and the regulation of the DNA binding activity of the FoxO1 transcription factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

ChIP:

Chromatin immunoprecipitation

DM:

Diabetes mellitus

DMEM:

Dulbecco’s modified Eagle’s medium

DTT:

Dithiothreitol

EGTA:

Ethylene glycol bis(2-aminoethyl ether)tetraacetic acid

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

FoxO1:

Forkhead box O1

G6Pase:

Glucose-6-phosphatase

GLUT4:

Glucose transporter 4

GSK3β:

Glycogen synthase kinase-3β

Hepes:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

HNMPA-(AM)3 :

Hydroxy-2-naphthalenylmethylphosphonic acid tris(acetoxymethyl) ester

IRβ:

Insulin receptor β-subunit

IRE:

Insulin regulatory element

IRS:

Insulin receptor substrate

MAPK:

Mitogen-activated protein kinase

PBS:

Phosphate-buffered saline

PBST:

Phosphate-buffered saline containing 0.1% Tween 20

PEPCK:

Phosphoenolpyruvate carboxykinase

PI3K:

Phosphatidylinositol 3-kinase

PKA:

Protein kinase A

PMSF:

Polymethylsulfonyl fluoride

pNP:

p-Nitrophenol

pNPP:

p-Phosphonitrophenol

SDS:

Sodium dodecyl sulfate

STZ:

Streptozotocin

TBS:

Tris(hydroxymethyl)aminomethane (Tris)-buffered saline

Tris:

Tris(hydroxymethyl)aminomethane

VO(alx)2 :

Bis(allixinato)oxovanadium(IV)

VO(ma)2 :

Bis(maltolato)oxovanadium(IV)

References

  1. Wild S, Roglic G, Green A, Sicree R, King H (2004) Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  2. Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, Nanjo K, Sasaki A, Seino Y, Ito C, Shima K, Nonaka K, Kadowaki T (2002) Diabetes Res Clin Pract 55:65–85

    Article  PubMed  Google Scholar 

  3. Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A (2006) Ann N Y Acad Sci 1084:89–117

    Article  PubMed  CAS  Google Scholar 

  4. Muoio DM, Newgard CB (2006) Annu Rev Biochem 75:367–401

    Article  PubMed  CAS  Google Scholar 

  5. Herman MA, Kahn BB (2006) J Clin Invest 116:1767–1775

    Article  PubMed  CAS  Google Scholar 

  6. Rosen ED, Spiegelman BM (2006) Nature 444:847–853

    Article  PubMed  CAS  Google Scholar 

  7. Saltiel AR, Pessin JE (2002) Trends Cell Biol 12:65–71

    Article  PubMed  CAS  Google Scholar 

  8. Watson RT, Pessin JE (2006) Trends Biochem Sci 31:215–222

    Article  PubMed  CAS  Google Scholar 

  9. Shepherd PR, Kahn BB (1999) N Engl J Med 341:248–257

    Article  PubMed  CAS  Google Scholar 

  10. Postic C, Dentin R, Girard J (2004) Diabetes Metab 30:398–408

    Article  PubMed  CAS  Google Scholar 

  11. Moller DE (2001) Nature 414:821–827

    Article  PubMed  CAS  Google Scholar 

  12. Stumvoll M (2003) Expert Opin Investig Drugs 12:1179–1187

    Article  PubMed  CAS  Google Scholar 

  13. Olefsky JM (2000) J Clin Invest 106:467–472

    PubMed  CAS  Google Scholar 

  14. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Science 293:1673–1677

    Article  PubMed  CAS  Google Scholar 

  15. Zhang ZY, Lee SY (2003) Expert Opin Investig Drugs 12:223–233

    Article  PubMed  CAS  Google Scholar 

  16. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) Chem Rev 104:849–902

    Article  PubMed  CAS  Google Scholar 

  17. Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR (1995) Mol Cell Biochem 153:217–231

    Article  PubMed  CAS  Google Scholar 

  18. Sakurai H, Katoh A, Yoshikawa Y (2006) Bull Chem Soc Jpn 79:1645–1664

    Article  CAS  Google Scholar 

  19. Thompson KH, Orvig C (2006) J Inorg Biochem 100:1925–1935

    Article  PubMed  CAS  Google Scholar 

  20. Fantus IG, Kadota S, Deragon G, Foster B, Posner BI (1989) Biochemistry 28:8864–8871

    Article  PubMed  CAS  Google Scholar 

  21. Nakai M, Watanabe H, Fujiwara C, Kakegawa H, Satoh T, Takada J, Matsushita R, Sakurai H (1995) Biol Pharm Bull 18:719–725

    PubMed  CAS  Google Scholar 

  22. Sekar N, Li J, He Z, Gefel D, Shechter Y (1999) Endocrinology 140:1125–1131

    Article  PubMed  CAS  Google Scholar 

  23. Mohammad A, Sharma V, McNeill JH (2002) Mol Cell Biochem 233:139–143

    Article  PubMed  CAS  Google Scholar 

  24. Marzban L, Rahimian R, Brownsey RW, McNeill JH (2002) Endocrinology 143:4636–4645

    Article  PubMed  CAS  Google Scholar 

  25. Srivastava AK, Mehdi MZ (2005) Diabet Med 22:2–13

    Article  PubMed  CAS  Google Scholar 

  26. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  27. O’Connor JC, Freund GG (2003) Metabolism 52:666–674

    Article  PubMed  CAS  Google Scholar 

  28. Papapetropoulos A, Fulton D, Lin MI, Fontana J, McCabe TJ, Zoellner S, Garcia-Cardena G, Zhou Z, Gratton JP, Sessa WC (2004) Mol Pharmacol 65:407–415

    Article  PubMed  CAS  Google Scholar 

  29. Jelveh KA, Zhande R, Brownsey RW (2006) J Biol Inorg Chem 11:379–388

    Article  PubMed  CAS  Google Scholar 

  30. Lu B, Ennis D, Lai R, Bogdanovic E, Nikolov R, Salamon L, Fantus C, Le-Tien H, Fantus IG (2001) J Biol Chem 276:35589–35598

    Article  PubMed  CAS  Google Scholar 

  31. Nechay BR (1984) Annu Rev Pharmacol Toxicol 24:501–524

    Article  PubMed  CAS  Google Scholar 

  32. Kawabe K, Yoshikawa Y, Adachi Y, Sakurai H (2006) Life Sci 78:2860–2866

    Article  PubMed  CAS  Google Scholar 

  33. Adachi Y, Yoshida J, Kodera Y, Katoh A, Takada J, Sakurai H (2006) J Med Chem 49:3251–3256

    Article  PubMed  CAS  Google Scholar 

  34. Adachi Y, Yoshikawa Y, Yoshida J, Kodera Y, Katoh A, Takada J, Sakurai H (2006) Biochem Biophys Res Commun 345:945–950

    Article  PubMed  CAS  Google Scholar 

  35. Basuki W, Hiromura M, Adachi Y, Tayama K, Hattori M, Sakurai H (2006) Biochem Biophys Res Commun 349:1163–1170

    Article  PubMed  CAS  Google Scholar 

  36. Ishiki M, Randhawa VK, Poon V, Jebailey L, Klip A (2005) J Biol Chem 280:28792–28802

    Article  PubMed  CAS  Google Scholar 

  37. Laemmli UK (1970) Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  38. Hill MM, Hemmings BA (2002) Methods Enzymol 345:448–463

    PubMed  Google Scholar 

  39. Hiromura M, Okada F, Obata T, Auguin D, Shibata T, Roumestand C, Noguchi M (2004) J Biol Chem 279:53407–53418

    Article  PubMed  CAS  Google Scholar 

  40. Hiromura M, Suizu F, Narita M, Kinowaki K, Noguchi M (2006) J Biol Chem 281:27753–27764

    Article  PubMed  CAS  Google Scholar 

  41. Usheva A, Shenk T (1996) Proc Natl Acad Sci USA 93:13571–13576

    Article  PubMed  CAS  Google Scholar 

  42. Kang SH, Vieira K, Bungert J (2002) Nucleic Acids Res 30:e44

    Article  PubMed  Google Scholar 

  43. Weinmann AS, Farnham PJ (2002) Methods 26:37–47

    Article  PubMed  CAS  Google Scholar 

  44. Mehdi MZ, Srivastava AK (2005) Arch Biochem Biophys 440:158–164

    Article  PubMed  CAS  Google Scholar 

  45. Mehdi MZ, Vardatsikos G, Pandey SK, Srivastava AK (2006) Biochemistry 45:11605–11615

    Article  PubMed  CAS  Google Scholar 

  46. Perry MC, Hales CN (1969) Biochem J 115:865–871

    PubMed  CAS  Google Scholar 

  47. Girolamo MD, Mendlinger S (1971) Am J Physiol 221:859–863

    PubMed  Google Scholar 

  48. Castan I, Wijkander J, Manganiello V, Degerman E (1999) Biochem J 339:281–289

    Article  PubMed  CAS  Google Scholar 

  49. Pandey SK, Anand-Srivastava MB, Srivastava AK (1998) Biochemistry 37:7006–7014

    Article  PubMed  CAS  Google Scholar 

  50. Baltensperger K, Lewis RE, Woon CW, Vissavajjhala P, Ross AH, Czech MP (1992) Proc Natl Acad Sci USA 89:7885–7889

    Article  PubMed  CAS  Google Scholar 

  51. Saperstein R, Vicario PP, Strout HV, Brady E, Slater EE, Greenlee WJ, Ondeyka DL, Patchett AA, Hangauer DG (1989) Biochemistry 28:5694–5701

    Article  PubMed  CAS  Google Scholar 

  52. O’Brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA (2001) Biochem Soc Trans 29:552–558

    Article  PubMed  CAS  Google Scholar 

  53. Nakae J, Kitamura T, Silver DL, Accili D (2001) J Clin Invest 108:1359–1367

    Article  PubMed  CAS  Google Scholar 

  54. Matsumoto M, Han S, Kitamura T, Accili D (2006) J Clin Invest 116:2464–2472

    PubMed  CAS  Google Scholar 

  55. Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, Klotsas A, Matika R, Xiao X, Franks R, Heidenreich KA, Sajan MP, Farese RV, Stolz DB, Tso P, Koo SH, Montminy M, Unterman TG (2006) J Biol Chem 281:10105–10117

    Article  PubMed  CAS  Google Scholar 

  56. Nakae J, Kitamura T, Kitamura Y, Biggs WH III, Arden KC, Accili D (2003) Dev Cell 4:119–129

    Article  PubMed  CAS  Google Scholar 

  57. Tang ED, Nunez G, Barr FG, Guan KL (1999) J Biol Chem 274:16741–16746

    Article  PubMed  CAS  Google Scholar 

  58. Rena G, Guo S, Cichy SC, Unterman TG, Cohen P (1999) J Biol Chem 274:17179–17183

    Article  PubMed  CAS  Google Scholar 

  59. Vander Kooi BT, Streeper RS, Svitek CA, Oeser JK, Powell DR, O’Brien RM (2003) J Biol Chem 278:11782–11793

    Article  PubMed  CAS  Google Scholar 

  60. White MF, Kahn CR (1994) J Biol Chem 269:1–4

    PubMed  CAS  Google Scholar 

  61. Salmeen A, Andersen JN, Myers MP, Tonks NK, Barford D (2000) Mol Cell 6:1401–1412

    Article  PubMed  CAS  Google Scholar 

  62. Zabolotny JM, Haj FG, Kim YB, Kim HJ, Shulman GI, Kim JK, Neel BG, Kahn BB (2004) J Biol Chem 279:24844–24851

    Article  PubMed  CAS  Google Scholar 

  63. Pannifer AD, Flint AJ, Tonks NK, Barford D (1998) J Biol Chem 273:10454–10462

    Article  PubMed  CAS  Google Scholar 

  64. Fukui K, Fujisawa Y, Oha-Nishiguchi H, Kamada H, Sakurai H (1999) J Inorg Chem 77:215–224

    CAS  Google Scholar 

  65. Bosch F, Hatzoglou M, Park EA, Hanson RW (1990) J Biol Chem 265:13677–13682

    PubMed  CAS  Google Scholar 

  66. Valera A, Rodriguez-Gil JE, Bosch F (1993) J Clin Invest 92:4–11

    Article  PubMed  CAS  Google Scholar 

  67. Plas DR, Thompson CB (2005) Oncogene 24:7435–7442

    Article  PubMed  CAS  Google Scholar 

  68. Taniguchi CM, Emanuelli B, Kahn CR (2006) Nat Rev Mol Cell Biol 7:85–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government [Grants-in-Aid for Scientific Research (B), Scientific Research on Priority Areas, and Specially Promoted Research] to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Sakurai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_295_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiromura, M., Nakayama, A., Adachi, Y. et al. Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor. J Biol Inorg Chem 12, 1275–1287 (2007). https://doi.org/10.1007/s00775-007-0295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0295-x

Keywords

Navigation