Skip to main content
Log in

Inhibition of cyclic AMP dependent protein kinase by vanadyl sulfate

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Vanadium salts influence the activities of a number of mammalian enzymes in vitro but the mechanisms by which low concentrations of vanadium ameliorate the effects of diabetes in vivo remain poorly understood. The hypothesis that vanadium compounds act by inhibiting protein tyrosine phosphatases has attracted most support. The studies described here further evaluate the possibility that vanadyl sulfate trihydrate (VS) can also inhibit 3′,5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA). Using conventional assay conditions, VS inhibited PKA only at high concentrations (IC50>400 μM); however, PKA inhibition was seen at dramatically lower concentrations of VS (IC50<10 μM) when sequestration of vanadyl ions was minimized. Vanadyl appears to be the effective PKA inhibitor because sodium orthovanadate did not inhibit PKA and inhibition by vanadyl was abolished by potential chelators such as ethylenediaminetetraacetic acid or glycyl peptides. PKA inhibition by vanadyl appears to be mixed rather than strictly competitive or uncompetitive and may replicate the inhibitory effects of high concentrations of Mg2+. The effect of vanadyl on PKA provides a possible explanation for the effects of vanadium salts on fat tissue lipolysis and perhaps on other aspects of energy metabolism that are controlled by cAMP-dependent mechanisms. Considering the high degree of conservation of the active sites of protein kinases, vanadyl may also influence other members of this large protein family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BMOV:

Bis(maltolato)oxovanadium(IV)

BSA:

Bovine serum albumin

cAMP:

3′,5′-Cyclic adenosine monophosphate

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethyleneglycol bis(β-aminoethylether)tetraacetic acid

EPR:

Electron paramagnetic resonance

GSH:

Reduced glutathione

K :

Equilibrium constant

k cat :

Catalytic constant

K i :

Competitive inhibition constant

\( {K}\ifmmode{'}\else$'$\fi_{{\text{i}}} \) :

Uncompetitive inhibition constant

K m :

Michaelis–Menten constant

MES:

2-(N-Morpholino)ethanesulfonic acid

OV:

Sodium orthovanadate

PDE:

Cyclic nucleotide phosphodiesterase

PI3K:

Phosphatidylinositol 3′-OH kinase

PKA:

Cyclic AMP dependent protein kinase

SEM:

Standard error of the mean

STZ:

Streptozotocin

UBC:

University of British Columbia

VS:

Vanadyl sulfate trihydrate

References

  1. Goldwaser I, Gefel D, Gershonov E, Fridkin M, Shechter Y (2000) J Inorg Biochem 80:21–25

    Article  PubMed  CAS  Google Scholar 

  2. Cam MC, Brownsey RW, McNeill JH (2000) Can J Physiol Pharmacol 78:829–847

    Article  PubMed  CAS  Google Scholar 

  3. Heyliger CE, Tahiliani AC, McNeill JH (1985) Science 227:1474–1477

    Article  PubMed  CAS  Google Scholar 

  4. Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rosetti L (1995) J Clin Invest 95:2501–2509

    PubMed  CAS  Google Scholar 

  5. Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR (1995) J Clin Endocrinol Metab 80:3311–3320

    Article  PubMed  CAS  Google Scholar 

  6. Swarup G, Cohen S, Garbers DL (1982) Biochem Biophys Res Commun 107:1104–1109

    Article  PubMed  CAS  Google Scholar 

  7. Fantus IG, Deragon G, Lai R, Tang S (1995) Mol Cell Biochem 153:103–112

    Article  PubMed  CAS  Google Scholar 

  8. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JB, Hall DA, Lum BS Shaver A (1994) J Biol Chem 269:4596–4604

    PubMed  CAS  Google Scholar 

  9. Eriksson JW, Lonnroth P, Smith U (1992) Diabetologia 35:510–516

    Article  PubMed  CAS  Google Scholar 

  10. Fantus IG, Ahmad F, Deragon G (1994) Diabetes 43:375–383

    Article  PubMed  CAS  Google Scholar 

  11. Gresser MJ, Tracey AS (1990) In: Chasteen ND (ed) Vanadium in biological systems, physiology and biochemistry. Kluwer, Dordrecht, pp 63–79

  12. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ Ramachandran C (1997) J Biol Chem 272:843–851

    Article  PubMed  CAS  Google Scholar 

  13. Green A (1986) Biochem J 238:663–669

    PubMed  CAS  Google Scholar 

  14. Mooney RA, Bordwell KL, Luhowskyj S, Casnellie JE (1989) Endocrinology 124:422–429

    PubMed  CAS  Google Scholar 

  15. Strout HV, Vicario PP, Saperstein R, Slater EE (1989) Endocrinology 124:1918–1924

    Article  PubMed  CAS  Google Scholar 

  16. Venkatesan N, Avidan A, Davidson MB (1991) Diabetes 40:492–498

    Article  PubMed  CAS  Google Scholar 

  17. Pandey SK, Madhu BA-S, Srivastava AK (1998) Biochemistry 37:7006–7014

    Article  PubMed  CAS  Google Scholar 

  18. Brownsey RW, Dong GD (1995) Mol Cell Biochem 153: 131–137

    Article  PubMed  CAS  Google Scholar 

  19. Fantus IG, Tsiani E (1998) Mol Cell Biochem 182:109–119

    Article  PubMed  CAS  Google Scholar 

  20. Post RL, Hunt DP, Walderhaug MO, Perkins RC, Park JH, Beth AH (1979) In: Skou JC, Noerby JG (eds) Proceedings of the international conference on the properties and functions of Na, K-ATPase: Academic, London, pp 389–401

  21. Shechter Y, Karlish SJ (1980) Nature 284:556–558

    Article  PubMed  CAS  Google Scholar 

  22. Loten EG, Sneyd JG (1970) Biochem J 120:187–193

    PubMed  CAS  Google Scholar 

  23. Degerman E, Smith CJ, Tornqvist H, Vasta V, Belfrage P, Manganiello VC (1990) Proc Natl Acad Sci USA 87:533–537

    Article  PubMed  CAS  Google Scholar 

  24. Ueki H, Okuhama R, Sera M, Inoue T, Tominaga N, Morita T (1992) Endocrinology 131:441–446

    Article  PubMed  CAS  Google Scholar 

  25. Castan I, Wijkander J, Manganiello V, Degerman E (1999) Biochem J 339:281–289

    Article  PubMed  CAS  Google Scholar 

  26. Pluskey S, Mahroof-Tahir M, Crans DC, Lawrence DS (1997) Biochem J 321:333–339

    PubMed  CAS  Google Scholar 

  27. Ramanadham S, Brownsey RW, Cros GH, Mongold JJ, McNeill JH (1989) Am J Physiol 257:H904–H911

    PubMed  CAS  Google Scholar 

  28. Marzban L, Rahimian R, Brownsey RW, McNeill JH (2002) Endocrinology 143:4636–4645

    Article  PubMed  CAS  Google Scholar 

  29. Chasteen ND (1981) In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 3. Plenum, New York, pp 53–119

  30. Tachez M, Theobald F (1980) Acta Crystallogr B 36:2873–2880

    Article  Google Scholar 

  31. Theobald F, Galy J (1973) Acta Crystallogr B 29:2732–2736

    Article  CAS  Google Scholar 

  32. Rodbell M (1964) J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  33. Severson DL, Denton RM, Bridges BJ, Randle PJ (1976) Biochem J 154:209–224

    PubMed  CAS  Google Scholar 

  34. Stansbie D, Brownsey RW, Crettaz M, Denton RM (1976) Biochem J 160:413–416

    PubMed  CAS  Google Scholar 

  35. Thomas JA, Schlender KK, Larner J (1968) Anal Biochem 25:486–499

    Article  PubMed  CAS  Google Scholar 

  36. Casnellie JE (1991) Methods Enzymol 200:115–120

    Article  PubMed  CAS  Google Scholar 

  37. Cornish-Bowden A (1995) In: Fundamentals of enzyme kinetics. Portland, London, pp 94–112

  38. Cornish-Bowden A (1995) In: Analysis of enzyme kinetic data. Oxford University Press, Oxford, pp 3–198

  39. Chasteen ND (1983) Struct Bonding 53:105–159

    CAS  Google Scholar 

  40. Crans DC, Tracey AS (1998) In: Tracey AS, Crans DC (eds) Vanadium compounds: chemistry, biochemistry, and therapeutic applications. ACS symposium series 711. American Chemical Society, Washington, DC, pp 2–29

  41. Chasteen ND, Francavilla J (1976) J Phys Chem 80:867–871

    Article  CAS  Google Scholar 

  42. Smith RM, Martell AE (1974) In: Smith RM, Martell AE (eds) Critical stability constants, vol 1. Plenum, New York, pp 204–211, 269–272

  43. Crans DC, Bunch RL, Theisen LA (1989) J Am Chem Soc 111:7597–7607

    Article  CAS  Google Scholar 

  44. Thompson KH, McNeill JH, Orvig C (1999) Chem Rev 99:2561–2572

    Article  PubMed  CAS  Google Scholar 

  45. Hanson GR, Sun Y, Orvig C (1996) Inorg Chem 35:6507–6512

    Article  PubMed  CAS  Google Scholar 

  46. Hengge AC (1998) In: Sinnott M (ed) Comprehensive biological catalysis, vol 1. Academic, New York, pp 517–542

  47. Zheng J, Knighton DR, Eyck LFT, Karlsson R, Xuong NH, Taylor SS, Sowadski JM (1993) Biochemistry 32:2154–2161

    Article  PubMed  CAS  Google Scholar 

  48. Granot J, Mildvan AS, Hiyama K, Kondo H, Kaiser ET (1980) J Biol Chem 255:4569–4573

    PubMed  CAS  Google Scholar 

  49. Nechay BR, Nanninga LB, Nechay PS (1986) Arch Biochem Biophys 251:128–138

    Article  PubMed  CAS  Google Scholar 

  50. Smith RM, Martell AE (1976) In: Smith RM, Martell AE (eds) Critical stability constants, vol 4. Plenum, New York, pp 1–14, 104–112

  51. Francavilla J, Chasteen ND (1975) Inorg Chem 14:2860–2862

    Article  CAS  Google Scholar 

  52. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) Chem Rev 104:849–902

    Article  PubMed  CAS  Google Scholar 

  53. Labonnette D (1988) J Chem Res S:92–93

    Google Scholar 

  54. Domingo JL (2002) Biol Trace Elem Res 88:97–112

    Article  PubMed  CAS  Google Scholar 

  55. Benabe JE, Echegoyen LA, Pastrana B, Martinez-Maldonado M (1987) J Biol Chem 262:9555–9560

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Grant Mauk and Federico Rosell (Department of Biochemistry and Molecular Biology, UBC) for help with EPR spectroscopy and Chris Orvig and Nicholas Aebischer (Department of Chemistry, UBC) for selected EPR studies and the supply of vanadium compounds. Finally, we thank John McNeill and members of his laboratory (Faculty of Pharmaceutical Sciences, UBC) for many helpful discussions. This work was supported by an operating grant from the Canadian Institutes of Health Research (to R.W.B.) and a UBC graduate fellowship (to K.A.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger W. Brownsey.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelveh, K.A., Zhande, R. & Brownsey, R.W. Inhibition of cyclic AMP dependent protein kinase by vanadyl sulfate. J Biol Inorg Chem 11, 379–388 (2006). https://doi.org/10.1007/s00775-006-0087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0087-8

Keywords

Navigation