Skip to main content

Advertisement

Log in

Vitexin isolated from Acanthus ilicifolius L. leaf enhances GLUT-4 translocation in experimental diabetic rats

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Acanthus ilicifolius L. leaf is extensively used in the Indian and Chinese medicine systems to treat diabetes mellitus. In this study, the antidiabetic effect of vitexin isolated from A. ilicifolius leaf extract and their effect on glucose transporter protein type-4 (GLUT-4) translocation and peroxisome proliferator-activated receptor gamma (PPAR-γ) expression was evaluated in high-fat diet-streptozotocin (HFD-STZ) induced rats. In vitro antidiabetic effect of vitexin was investigated through glucose uptake activity in L6 (rat skeletal muscle) cell lines. Vitexin (10 and 20 mg/kg BW) was administered orally to HFD-STZ-induced diabetic rats for 48 days. The effect of vitexin on body weight, fasting blood glucose, serum insulin, total protein, urea, creatinine, and liver enzymes was examined. GLUT-4 translocation and PPAR-γ expression were studied in the skeletal muscle and adipocytes of experimental rats. The interaction of vitexin with GLUT-4 and PPAR-γ was validated by molecular docking analysis. Vitexin significantly lowered the blood glucose and also normalized other biochemical parameters. Furthermore, the treatment with vitexin up-regulates the mRNA expression of GLUT-4 and PPAR-γ in diabetic rats. In silico analysis also supports the promising interactions between vitexin and target proteins. These results explained that vitexin up-regulates the mRNA expression of GLUT-4 and PPAR-γ and enhanced the translocation of GLUT-4 which maintains glucose homeostasis. Thus, vitexin can serve as a novel antidiabetic drug in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data are contained within the article.

Abbreviations

A. ilicifolius :

Acanthus ilicifolius

ALT:

Alanine transaminase

ALP:

Alkaline phosphatase

AST:

Aspartate aminotransferase

ANOVA:

Analysis of variance

ACE:

Atomic contact energy

BW:

Body weight

13C NMR:

Carbon-13 nuclear magnetic resonance

cDNA:

Complementary DNA

DM:

Diabetes mellitus

DEPC:

Diethyl pyrocarbonate

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked immunosorbent assay

EDTA:

Ethylene diamine tetraacetic acid

FBG:

Fasting blood glucose

FSI:

Fasting serum insulin

FTIR:

Fourier transform infrared

GC:

Gas chromatography

GLUT-4:

Glucose transporter protein type-4

HbA1c:

Glycated hemoglobin

HSQC:

Heteronuclear single quantum coherence

HDL:

High-density lipoprotein cholesterol

HFD:

High-fat diet

HFD-STZ:

High-fat diet-streptozotocin

HOMA-IR:

Homeostasis of model assessment-insulin resistance

1H NMR:

Hydrogen-1 nuclear magnetic resonance

IR:

Infrared

λmax :

Lambda max

LD50 :

lethal dose, 50%

LC-MS:

Liquid chromatography-mass spectrometry

LDL:

Low-density lipoprotein

NTC:

Negative temperature coefficient

NMR:

Nuclear magnetic resonance

OECD:

Organisation for Economic Co-operation and Development

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

PCR:

Polymerase chain reaction

PDB:

Protein Data Bank

RBC:

Red blood cell

RT-PCR:

Real-time polymerase chain reaction

Rf :

Retention factor

RNA:

Ribonucleic acid

RNAse:

Ribonuclease

NaOH:

Sodium hydroxide

STZ:

Streptozotocin

TLC:

Thin-layer chromatography

TC:

Total cholesterol

TP:

Total protein

TG:

Triglycerides

2D COSY:

Two-dimensional correlation spectroscopy

VLDL:

Very low-density lipoproteins

References

  • Adkine MSD, Tiwaskar S, Pathade A (2022) Kidney and dialysis with its complications and management. J Pharm Negat 13:178–184

    Google Scholar 

  • Ahmed K, Roy BK, Saha BK (2005) Pharmacological evaluation of Acanthus ilicifolius L. root extract for asthmatic condition. Bangladesh J SciInd Res 40:195–202

    CAS  Google Scholar 

  • Amritpal S, Sanjiv D, Ashish S (2009) Acanthus ilicifolius Linn.-lesser known medicinal plants with significant pharmacological activities. Int J Phytomedicine 1(1):1–3

    Google Scholar 

  • Asha KK, Mathew S, Lakshmanan PT (2012) Flavonoids and phenolic compounds in two mangrove species and their antioxidant property. Indian J Geomarine Sci 41(3):259–264

    CAS  Google Scholar 

  • Babu BH, Shylesh BS, Padikkala J (2001) Antioxidant and hepatoprotective effect of Acanthus ilicifolius. Fitoterapia 72(3):272–277

    CAS  PubMed  Google Scholar 

  • Banwari M, Kawathekar N, Jain G (2023) Pathophysiology and treatment of type 2 diabetes mellitus: a review. J Coast Life Med 11:1171–1193

    Google Scholar 

  • Berendsen HJC, Van der Spoel D, Van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1-3):43–56

    CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burg VK, Grimm HS, Rothhaar TL, Grösgen S, Hundsdörfer B, Haupenthal VJ, Zimmer VC, Mett J, Weingärtner O, Laufs U, Broersen LM, Tanila H, Vanmierlo T, Lütjohann D, Hartmann T, Grimm MO (2013) Plant sterols the better cholesterol in Alzheimer’s disease?A mechanistical study. J Neurosci Res 33(41):16072–16087

    CAS  Google Scholar 

  • Calisti T (2005) Measure of glycated haemoglobin. Acta. Biomedica 76(3):56–61

    Google Scholar 

  • Chafiaa M, Dina AK, Stephane D, Dominique P, Philippe G, Djebbar A (2016) Hepatoprotective and antidiabetic effects of Pistacia lentiscus leaf and fruit extracts. J Food Drug Anal 24(1):653–669

    Google Scholar 

  • Chakraborty T, Bhuniya D, Chatterjee M, Rahaman M, Singha D, Chatterjee BN, Datta S, Rana A, Samanta K, Srivastawa S, Chatterjee MSK (2007) Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable ehrlich ascites carcinoma-bearing murine model. World J Gastroenterol 13(48):6538–6548

    PubMed  PubMed Central  Google Scholar 

  • Dey A, Raihan SM, Sariful Islam HM, Monjur-Al-Hossain HM (2012) Phytochemical screening and the evaluation of the antioxidant, cytotoxic and antimicrobial properties of Acanthus ilicifolius (family: Acanthaceae). Int Res J Pharm 3(8):153–156

    CAS  Google Scholar 

  • D’Souza L, Wahidulla S, Mishra PD (1997) Bisoxazolinone from the mangrove Acanthus ilicifolius. Indian J Chem B 36B:1079–1081

    Google Scholar 

  • Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY (2022) Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. Mol Biol 3(1):1–32

    Google Scholar 

  • Gandhi GR, Stalin A, Balakrishna K, Ignacimuthu S, Paulraj MG, Vishal R (2013) Insulin sensitization via partial agonism of PPARγ and glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signalling pathway by embelin in type 2 diabetic rats. Biochim Biophys Acta 1830 (1):2243–2255

    Google Scholar 

  • Ganesh S, Vennila JJ (2010) Screening for antimicrobial activity in Acanthus ilicifolius. Arch Appl Sci Res 2(5):311–315

    CAS  Google Scholar 

  • Ganjayi MS, Karunakaran RS, Gandham S, Meriga B (2023) Quercetin-3-O-rutinoside from Moringa oleifera downregulates adipogenesis and lipid accumulation and improves glucose uptake by activation of AMPK/Glut-4 in 3T3-L1 cells. Rev Bras 33(2):334–343

    CAS  Google Scholar 

  • Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors—perspectives from metabolic reprogramming. EBioMedicine 83:104215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giglio RV, Papanas N, Rizvi AA, Ciaccio M, Patti AM, Ilias I, Pantea Stoian A, Sahebkar A, Janez A, Rizzo M (2022) An update on the current and emerging use of thiazolidinediones for type 2 diabetes. Medicina 58(10):1475

    PubMed  PubMed Central  Google Scholar 

  • Gire D, Acharya J, Malik S, Inamdar S, Ghaskadbi S (2021) Molecular mechanism of anti-adipogenic effect of vitexin in differentiating hMSCs. Phytother Res 35(11):6462–6471

    CAS  PubMed  Google Scholar 

  • Goncalves MD, Farooki A (2022) Management of phosphatidylinositol-3-kinase inhibitor-associated hyperglycemia. Integr Cancer Ther 21:15347354211073163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RN, Pareek A, Suthar M, Rathore G, Pawan K, Baniwal DJ (2009) Study of glucose uptake activity of Helicteresisora Linn. Fruits in L6 cell lines. Int J Diabetes Dev Ctries 29(4):170–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Min J-W, Kong W-L, He X-H, Li J-X, Peng B-W (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115(74):85

    Google Scholar 

  • Islam AR, Hasan MM, Islam MT, Tanaka N (2022) Ethnobotanical study of plants used by the Munda ethnic group living around the Sundarbans, the world’s largest mangrove forest in southwestern Bangladesh. J Ethnopharmacol 285:114853

    Google Scholar 

  • Juvekar AR, Bandawane DD (2009) Preliminary study on hypoglycemic effect of Alstonia scholaris Linn. in normal and streptozotocin induced diabetic rats. Advances in pharmacology and toxicology 10(3):89–92

    Google Scholar 

  • Kanchanapoom T, Kamel MS, Kasai R, Yamasaki K, Picheansoonthon C, Hiraga Y (2001) Lignan glucosides from Acanthus ilicifolius. Phytochemistry 56(4):369–372

    CAS  PubMed  Google Scholar 

  • Kapil A, Sharma S, Wahidulla S (1994) Leishmanicidal activity of 2-benzoxazolinone from Acanthus ilicifolius in vitro. Planta Med 60:187–188

    CAS  PubMed  Google Scholar 

  • Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2556

    CAS  PubMed  Google Scholar 

  • Kifle ZD, Enyew EF (2020) Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica fresen (Melianthaceae). J. Evid.-Based. Integr Med 25:2515690X20935827

    CAS  Google Scholar 

  • Kumar BA, Lakshman K, Jayaveea KN, Shekar DS, Khan S, Thippeswamy BS, Veerapur VP (2012) Antidiabetic, antihyperlipidemic and antioxidant activities of methanolic extract of Amaranthus viridis Linn. in alloxan induced diabetic rats. Exp Toxicol Pathol 64(1-2):75–79

    CAS  Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Plant Physiol Biochem 160(10):1157–1164

    CAS  Google Scholar 

  • Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y (2023) Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 8(1):152

    CAS  PubMed  PubMed Central  Google Scholar 

  • London E, Stratakis CA (2022) The regulation of PKA signaling in obesity and in the maintenance of metabolic health. Pharmacol Ther 237:108113

    CAS  PubMed  Google Scholar 

  • Mani Senthil Kumar KT, Gorain B, Roy DK, Zothanpuia SK, Samanta M, Pal Biswas P, Roy A, Adhikari Karmakar S, Sen T (2008) Anti-inflammatory activity of Acanthus ilicifolius. J Ethnopharmacol 120(1):7–12

    CAS  PubMed  Google Scholar 

  • Mastaller M, Howes JR, Matthew J (1997) Mangroves: the forgotten forest between land and sea. Tropical Press

    Google Scholar 

  • Maughana R (2009) Carbohydrate metabolism. Surgery (Oxford) 27:6–10

    Google Scholar 

  • Mohammed A, Koorbanally NA, Islam MS (2016) Anti-diabetic effect of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) fruit acetone fraction in a type 2 diabetes model of rats. J. Ethnopharmacol. 180(1):131–139

    Google Scholar 

  • Murty MSR, Solimabi Kamat SY (1984) Isolation of 2-benzoxazolinone from Acanthus ilicifolius. Indian J Pharm Sci 46(6):218–219

    CAS  Google Scholar 

  • Nazarian-Samani Z, Sewell RD, Lorigooini Z, Rafieian Kopaei M (2018) Medicinal plants with multiple effects on diabetes mellitus and its complications: a systematic review. Curr Diabetes Rep 18:1–13

    CAS  Google Scholar 

  • Nizamuddin BS, Danamma B, Chita S, Mohd D, Abdul M (2011) Evaluation of antiulcer activity in the methanol extract of Acanthus ilicifolius leaves in experimental rats. J Int Pharm Res 1(1):57–62

    Google Scholar 

  • Palikhey A, Karki M, Shrestha J, Shrestha L, Shrivastava AK, Yadav CK, Rayamajhi B (2022) Efficacy and safety of dipeptidyl peptidase-4 inhibitor compared to sulphonylurea in type II diabetes patients inadequately controlled with metformin alone. Univers J Med Sci 10(01):40–44

    Google Scholar 

  • Pan H, Sun J, Luo X, Ai H, Zeng J, Shi R, Zhang A (2023) A risk prediction model for type 2 diabetes mellitus complicated with retinopathy based on machine learning and its application in health management. Front Med 10:1136653

    Google Scholar 

  • Patel AN, Deepti DB, Nilam KM (2014) Pomegranate (Punica ranatum Linn.) leaves attenuate disturbed glucose homeostasis and hyperglycemia mediated hyperlipidemia and oxidative stress in streptozotocin induced diabetic rats. Eur J Integr Med 6(3):307–321

    Google Scholar 

  • Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38(10):1933–1953

    CAS  PubMed  Google Scholar 

  • Poorna CA, Maney SK, Santhoshkumar TR, Soniya EV (2011) In vitro screening for biological activities of Acanthus ilicifolius. J Pharma Res Phytochem Anal 4(7):1977–1981

    CAS  Google Scholar 

  • Rakhshandehroo M, Knoch B, Muller M, Kersten S (2010) Peroxisome proliferator activated receptor alpha target genes. PPAR Res 2010:1–20. https://doi.org/10.1155/2010/612089

    Article  CAS  Google Scholar 

  • Rashid O, Fatima M (2024) Role of insulin sensitizers in the management of polycystic ovary syndrome. In: Polycystic Ovary Syndrome, pp 130–135

    Google Scholar 

  • Ravikumar S, Raja M, Gnanadesigan M (2012) Antibacterial potential of benzoate and phenylethanoid derivatives isolated from Acanthus ilicifolius L. leaf extracts. Nat Prod Res 26(1):2270–2273

    CAS  PubMed  Google Scholar 

  • Ravindran S, Munusamy S (2022) Renoprotective mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease. J Cell Physiol 237(2):1182–1205

    CAS  PubMed  Google Scholar 

  • Rhodes C, White M (2002) Molecular insights into insulin action and secretion European. J Clin Investig 32(3):3–13

    CAS  Google Scholar 

  • Sameer M, Asia T, Bamezai RNK, Najma ZB (2006) Modulation of glucose transporter (GLUT4) by vanadate and Trigonella in alloxan-diabetic rats. Life Sci 78:820–824

    Google Scholar 

  • Sangeetha MK, Priya CM, Vasanthi HR (2013) Anti-diabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes. Phytomedicine. 20(3-4):246–248

    CAS  PubMed  Google Scholar 

  • Saranya A, Thirugnanasambandam R, Kesavanarayanan KS, Adam A (2015) Traditional medicinal uses, chemical constituents and biological activities of a mangrove plant, Acanthus ilicifolius Linn.: a brief review. Eurasian J Agric Environ Sci 15(2):243–250

    Google Scholar 

  • Scheper AF, Schofield J, Bohara R, Ritter T, Pandit A (2023) Understanding glycosylation: regulation through the metabolic flux of precursor pathways. Biotechnol Adv 67:108184

    CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny Y, Inbar R, Nussinov HJ, Wolfson, PatchDock, SymmDock (2005) Servers for rigid and symmetric docking. Nucleic Acids Res 33: 363-367.

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Patial V (2022) Peroxisome proliferator-activated receptor gamma and its natural agonists in the treatment of kidney diseases. Front Pharmacol 13:991059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song BR, Alam MB, Lee SH (2022) Terpenoid-rich extract of Dillenia indica L. bark displays antidiabetic action in insulin-resistant C2C12 cells and STZ-induced diabetic mice by attenuation of oxidative stress. Antioxidants 11(7):1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52(4):313–320

    CAS  PubMed  Google Scholar 

  • Thilakarathna SH, Wang Y, Vasantha Rupasinghe HP, Ghanam K (2012) Apple peel flavonoid-and triterpene enriched extracts differentially affect cholesterol homeostasis in hamsters. J Funct Foods 4(4):963–971

    CAS  Google Scholar 

  • Thompson LE, Joy MS (2022) Endogenous markers of kidney function and renal drug clearance processes of filtration, secretion, and reabsorption. Curr OpinToxicol 31:100344

    CAS  Google Scholar 

  • Van Gerwen J, Shun-Shion AS, Fazakerley DJ (2023) Insulin signalling and GLUT4 trafficking in insulin resistance. Biochem Soc Trans BST20221066

  • Van Kiem P, Quang TH, Huong TH, Nhung le NX, Cuong C, Van Minh Choi EM, Kim YH (2008) Chemical constituents of Acanthus ilicifolius L. and effect on osteoblastic MC3T3E1 cells. Arch Pharm Res 31(7):823–829

    CAS  PubMed  Google Scholar 

  • Wang Z, Wang J, Chan P (2013) Treating type 2 diabetes mellitus with traditional chinese and Indian medicinal herbs. Evid-based Complement Altern Med 2013:343594

    Google Scholar 

  • Weng Y, Yu L, Cui J, Zhu YR, Guo C, Wei G, Duan JL, Yin Y, Guan Y, Wang YH, Yang ZF (2014) Antihyperglycemic, hypolipidemic and antioxidant activities of total saponins extracted from Aralia taibaiensis in experimental type 2 diabetic rats. J Ethnopharmacol 152(3):553–560

  • Williams IM, Wasserman DH (2022) Capillary endothelial insulin transport: the rate-limiting step for insulin-stimulated glucose uptake. Endocrinology 163(2):bqab252

    PubMed  Google Scholar 

  • Wu J, Zhang S, Xiao Q, Li Q, Huang J, Long L, Huang L (2003) Megastigmane and flavone glycosides from Acanthus ilicifolius. Pharmazie 58:363–364

    CAS  PubMed  Google Scholar 

  • Zaid H, Antonescu CN, Randhawa VK, Klip A (2008) Insulin action on glucose transporters through molecular switches tracks and tethers. Biochem J 413:201–215

    CAS  PubMed  Google Scholar 

  • Zohora FT, Hasan AN, Alam KK, Wahed TB (2023) Traditional use, phytochemistry, pharmacological and toxicological properties of Acanthus ilicifolius: a review. J Biosci 11(5):181–192

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management of Vellore Institute of Technology for supporting the study.

Funding

This study was supported by the management of Vellore Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design, material preparation, data collection, analysis, and writing of the first draft of the manuscript (Gayathri GA). Data analysis, manuscript writing, revision, and edition (Kavya P). Manuscript revision (Ashwini D, Eshika Chakraborty, and Idris Adewale Ahmed). Research work design and supervision, supervision of manuscript writing, revision, editing, and approval of the final version of the manuscript (Gayathri M). All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gayathri Mahalingam.

Ethics declarations

Ethical approval

The study was conducted after obtaining the approval from Institutional Animal Ethical Committee (VIT/IEAC/9th/july26th/18). All the protocols on animal experiments were performed as per the guidelines of OECD.

Competing interests

The authors declare no competing interests.

Additional information

Handling editor: Raja Sudhakaran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, G.A., Kavya, P., Ashwini, D. et al. Vitexin isolated from Acanthus ilicifolius L. leaf enhances GLUT-4 translocation in experimental diabetic rats. Aquacult Int 31, 3159–3187 (2023). https://doi.org/10.1007/s10499-023-01235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-023-01235-z

Keywords

Navigation