Skip to main content
Log in

Models for dioxygen activation by the CuB site of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

On the basis of spectroscopic and crystallographic data for dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase (PHM), a variety of ligand sets have been used to model the oxygen-binding Cu site in these enzymes. Calculations which employed a combination of density functional and multireference second-order perturbation theory methods provided insights into the optimal ligand set for supporting η 1 superoxo coordination as seen in a crystal structure of a precatalytic Cu/O2 complex for PHM (Prigge et al. in Science 304:864–867, 2004). Anionic ligand sets stabilized η 2 dioxygen coordination and were found to lead to more peroxo-like Cu–O2 complexes with relatively exergonic binding free energies, suggesting that these adducts may be unreactive towards substrates. Neutral ligand sets (including a set of two imidazoles and a thioether), on the other hand, energetically favored η 1 dioxygen coordination and exhibited limited dioxygen reduction. Binding free energies for the 1:1 adducts with Cu supported by the neutral ligand sets were also higher than with their anionic counterparts. Deviations between the geometry and energetics of the most analogous models and the PHM crystal structures suggest that the protein environment influences the coordination geometry at the CuB site and increases the lability of water bound to the preoxygenated reduced form. Another implication is that a neutral ligand set will be critical in biomimetic models in order to stabilize η 1 dioxygen coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. All calculations based directly on the PHM crystal structures used models in which bonds from Cu to ligating atoms were fixed at the distances and angles present in the crystal structure (see the “Choice of model systems” section). Consequently, the main geometric parameters in these models are those shown in Fig. 1.

References

  1. Klinman JP (1996) Chem Rev 96:2541–2561

    Article  PubMed  CAS  Google Scholar 

  2. Stewart LC, Klinman JP (1988) Annu Rev Biochem 57:551–592

    Article  PubMed  CAS  Google Scholar 

  3. Eipper BA, Stoffers DA, Mains RE (1992) Annu Rev Neurosci 15:57–85

    Article  PubMed  CAS  Google Scholar 

  4. Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE (1993) Protein Sci 2:489–497

    Article  PubMed  CAS  Google Scholar 

  5. McMahon A, Geertman R, Sabban EL (1990) J Neurosci Res 25:395–404

    Article  PubMed  CAS  Google Scholar 

  6. Stoffers DA, Green CB, Eipper BA (1989) Proc Natl Acad Sci USA 86:735–739

    Article  PubMed  CAS  Google Scholar 

  7. Tian GC, Berry JA, Klinman JP (1994) Biochemistry 33:226–234

    Article  PubMed  CAS  Google Scholar 

  8. Evans JP, Ahn K, Klinman JP (2003) J Biol Chem 278:49691–49698

    Article  PubMed  CAS  Google Scholar 

  9. Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1997) Science 278:1300–1305

    Article  PubMed  CAS  Google Scholar 

  10. Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1999) Nat Struct Biol 6:976–983

    Article  PubMed  CAS  Google Scholar 

  11. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864–867

    Article  PubMed  CAS  Google Scholar 

  12. Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Angew Chem Int Ed Engl 40:4570–4590

    Article  PubMed  CAS  Google Scholar 

  13. Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    Article  PubMed  CAS  Google Scholar 

  14. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045

    Article  PubMed  CAS  Google Scholar 

  15. Chen P, Bell J, Eipper BA, Solomon EI (2004) Biochemistry 43:5735–5747

    Article  PubMed  CAS  Google Scholar 

  16. Chen P, Solomon EI (2004) J Am Chem Soc 126:4991–5000

    Article  PubMed  CAS  Google Scholar 

  17. Champloy F, Benali-Cherif N, Bruno P, Blain I, Pierrot M, Reglier M, Michalowicz A (1998) Inorg Chem 37:3910–3918

    Article  PubMed  CAS  Google Scholar 

  18. Santra BK, Reddy PAN, Nethaji M, Chakravarty AR (2002) Inorg Chem 41:1328–1332

    Article  PubMed  CAS  Google Scholar 

  19. Kodera M, Kita T, Miura I, Nakayama N, Kawata T, Kano K, Hirota S (2001) J Am Chem Soc 123:7715–7716

    Article  PubMed  CAS  Google Scholar 

  20. Osako T, Nagatomo S, Tachi Y, Kitagawa T, Itoh S (2002) Angew Chem Int Ed Engl 41:4325–4328

    Article  PubMed  CAS  Google Scholar 

  21. Fujisawa K, Tanaka M, Morooka Y, Kitajima N (1994) J Am Chem Soc 116:12079–12080

    Article  CAS  Google Scholar 

  22. Chen P, Root DE, Campochiaro C, Fujisawa K, Solomon EI (2003) J Am Chem Soc 125:466–474

    Article  PubMed  CAS  Google Scholar 

  23. Spencer DJE, Aboelella NW, Reynolds AM, Holland PL, Tolman WB (2002) J Am Chem Soc 124:2108–2109

    Article  PubMed  CAS  Google Scholar 

  24. Aboelella NW, Kryatov SV, Gherman BF, Brennessel WW, Young VG Jr, Sarangi R, Rybak-Akimova EV, Hodgson KO, Hedman B, Solomon EI, Cramer CJ, Tolman WB (2004) J Am Chem Soc 126:16896–16911

    Article  PubMed  CAS  Google Scholar 

  25. Reynolds AM, Gherman BF, Cramer CJ, Tolman WB (2005) Inorg Chem 44:6989–6997

    Article  PubMed  CAS  Google Scholar 

  26. Reynolds AM, Lewis EA, Aboelella NW, Tolman WB (2005) Chem Commun 2014–2016

  27. Blackburn NJ, Hasnain SS, Pettingill TM, Strange RW (1991) J Biol Chem 266:23120–23127

    PubMed  CAS  Google Scholar 

  28. Reedy BJ, Blackburn NJ (1994) J Am Chem Soc 116:1924–1931

    Article  CAS  Google Scholar 

  29. Boswell JS, Reedy BJ, Kulathila R, Merkler D, Blackburn NJ (1996) Biochemistry 35:12241–12250

    Article  PubMed  CAS  Google Scholar 

  30. Blackburn NJ, Rhames FC, Ralle M, Jaron S (2000) J Biol Inorg Chem 5:341–353

    Article  PubMed  CAS  Google Scholar 

  31. Kolhekar AS, Keutmann HT, Mains RE, Quon ASW, Eipper BA (1997) Biochemistry 36:10901–10909

    Article  PubMed  CAS  Google Scholar 

  32. Schrodinger LLC (2002) Jaguar 5.0. Schrodinger, Portland, OR

  33. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  35. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Ducere J-M, Goursot A, Berthomieu D (2005) J Phys Chem A 109:400–408

    Article  PubMed  CAS  Google Scholar 

  37. Gherman BF, Cramer CJ (2004) Inorg Chem 43:7281–7283

    Article  PubMed  CAS  Google Scholar 

  38. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  39. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  40. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  41. Bauschlicher CW, Partridge H (1995) J Chem Phys 103:1788–1791

    Article  CAS  Google Scholar 

  42. Cramer CJ (2004) Essentials of computational chemistry. Theories and models, 2nd edn. Wiley, Chichester

    Google Scholar 

  43. Abraham MH, Andonian-Haftvan J, Whiting GS, Leo A, Taft RS (1994) J Chem Soc Perkin Trans 2 1777–1791

    Google Scholar 

  44. Thompson JD, Cramer CJ, Truhlar DG (2005) Theor Chem Acc 113:107–131

    Article  CAS  Google Scholar 

  45. Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B (1996) J Phys Chem 100:11775–11788

    Article  CAS  Google Scholar 

  46. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA, Honig B (1994) J Am Chem Soc 116:11875–11882

    Article  CAS  Google Scholar 

  47. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998) J Phys Chem A 102:7787–7794

    Article  CAS  Google Scholar 

  48. Ross S (1985) The proton, applications to organic chemistry. Academic, Orlando

    Google Scholar 

  49. Lide DR (2004) Handbook of chemistry and physics, 85th edn. CRC, Boca Raton

    Google Scholar 

  50. Andersson K, Malmqvist PA, Roos BO (1992) J Chem Phys 96:1218–1226

    Article  CAS  Google Scholar 

  51. Karlstrom G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Math Sci 28:222–239

    Article  CAS  Google Scholar 

  52. Barandiaran Z, Seijo L (1992) Can J Chem 70:409–415

    Article  CAS  Google Scholar 

  53. Pierloot K, Dumez B, Widmark PO, Roos BO (1995) Theor Chim Acta 90:87–114

    CAS  Google Scholar 

  54. Carvajal MA, Novoa JJ, Alvarez S (2004) J Am Chem Soc 126:1465–1477

    Article  PubMed  CAS  Google Scholar 

  55. Fox BS, Beyer MK, Bondybey VE (2002) J Am Chem Soc 124:13613–13623

    Article  PubMed  CAS  Google Scholar 

  56. Schmiedekamp AM, Ryan MD, Deeth RJ (2002) Inorg Chem 41:5733–5743

    Article  PubMed  CAS  Google Scholar 

  57. Feller D, Glendening ED, de Jong WA (1999) J Chem Phys 110:1475–1491

    Article  CAS  Google Scholar 

  58. Burda JV, Pavelka M, Simanek M (2004) THEOCHEM 683:183–193

    Article  CAS  Google Scholar 

  59. Pavelka M, Burda JV (2005) Chem Phys 312:193–204

    Article  CAS  Google Scholar 

  60. Cramer CJ, Tolman WB, Theopold KH, Rheingold AL (2003) Proc Natl Acad Sci USA 100:3635–3640

    Article  PubMed  CAS  Google Scholar 

  61. Vaska L (1976) Acc Chem Res 9:175–183

    Article  CAS  Google Scholar 

  62. Record MT Jr, Anderson CF, Mills P, Mossing M, Roe JH (1985) Adv Biophys 20:109–135

    Article  PubMed  CAS  Google Scholar 

  63. von Hippel PH (1994) Science 263:769–770

    Article  PubMed  Google Scholar 

  64. Spolar RS, Record MT Jr (1994) Science 263:777–784

    Article  PubMed  CAS  Google Scholar 

  65. Dixit SB, Jayaram B (1998) J Biomol Struct Dyn 16:237–242

    PubMed  CAS  Google Scholar 

  66. Kinsinger CR, Gherman BF, Gagliardi L, Cramer CJ (2005) J Biol Inorg Chem 10:778–789

    Article  PubMed  CAS  Google Scholar 

  67. Kamachi T, Kihara N, Shiota Y, Yoshizawa K (2005) Inorg Chem 44:4226–4236

    Article  PubMed  CAS  Google Scholar 

  68. McCracken J, Desai PR, Papadopoulos NJ, Villafranca JJ, Peisach J (1988) Biochemistry 27:4133–4137

    Article  PubMed  CAS  Google Scholar 

  69. Brenner MC, Klinman JP (1989) Biochemistry 28:4664–4670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the NIH through an NRSA postdoctoral fellowship to B.F.G. and from the University of Minnesota Department of Chemistry through a Gleysteen Scholarship to D.E.H. The National Science Foundation (CHE-0203346 to C.J.C.) and the NIH (GM47365 to W.B.T.) are also thanked for partial support for this work. We thank Edward Solomon and Peng Chen for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F. Gherman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gherman, B.F., Heppner, D.E., Tolman, W.B. et al. Models for dioxygen activation by the CuB site of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase. J Biol Inorg Chem 11, 197–205 (2006). https://doi.org/10.1007/s00775-005-0066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0066-5

Keywords

Navigation