Skip to main content
Log in

Quantification of isomeric equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA)

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The acidity constants of the two-fold protonated acyclic 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine, H2(9,8aPMEA)±, and its 8-isomer, 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine, H2(8,8aPMEA)±, both abbreviated as H2(PA)±, as well as the stability constants of their M(H;PA)+ and M(PA) complexes with the metal ions M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ or Cd2+, have been determined by potentiometric pH titrations in aqueous solution at I=0.1 M (NaNO3) and 25 °C. Application of previously determined straight-line plots of log \( K_{{\text{M(R-PO}}_{\text{3}} {\text{)}}}^{\text{M}} \) versus \( {\text{p}}K_{{\text{H(R-PO}}_{\text{3}} {\text{)}}}^{\text{H}} \) for simple phosph(on)ate ligands, \( {\text{R-PO}}_3^{2-} \), where R represents a residue without an affinity for metal ions, proves that for all M(PA) complexes a larger stability is observed than is expected for a sole phosphonate coordination of the metal ion. This increased stability is attributed to the formation of five-membered chelates involving the ether oxygen present in the aliphatic residue (\( {\text{-CH}}_{\text{2}} {\text{-O-CH}}_{\text{2}} {\text{-PO}}_{\text{3}}^{{\text{2}}-} \)) of the ligands. The formation degrees of these chelates were calculated; they vary between about 13% for Ca(8,8aPMEA) and 71% for Cu(8,8aPMEA). The adenine residue has no influence on complex stability except in the Cu(9,8aPMEA) and Zn(9,8aPMEA) systems, where an additional stability increase attributable to the adenine residue is observed and equilibria between four different isomers exist. This means (1) an open isomer with a sole phosphonate coordination, M(PA)op, where PA2−=9,8aPMEA2−, (2) an isomer with a five-membered chelate involving the ether oxygen, M(PA)cl/O, (3) an isomer which contains five- and seven-membered chelates formed by coordination of the phosphonate group, the ether oxygen and the N3 site of the adenine residue, M(PA)cl/O/N3, and finally (4) a macrochelated isomer involving N7, M(PA)cl/N7. For Cu(9,8aPMEA) the formation degrees are 15, 30, 48 and 7% for Cu(PA)op, Cu(PA)cl/O, Cu(PA)cl/O/N3 and Cu(PA)cl/N7, respectively; this proves that the macrochelate involving N7 is a minority species. The situation for the Cu(PMEA) system, where PMEA2− represents the parent compound, i.e. the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine, is quite similar. The relationship between the antiviral activity of acyclic nucleoside phosphonates and the structures of the various complexes is discussed and an explanation is offered why 9,8aPMEA is biologically active but 8,8aPMEA is not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For further abbreviations see the legends to Figs. 1 and 2

  2. Species written without a charge either do not carry one or represent the species in general (i.e. independent of their protonation degree); which of the two possibilities applies is always clear from the context. In formulas like M(H;PA)+, the H+ and PA2− are separated by a semicolon to facilitate reading, yet they appear within the same parenthesis to indicate that the proton is at the ligand without defining its location

  3. Information regarding US FDA: (2002) Chem Rundschau (CH-4501 Solothurn, Switzerland) no. 19 (Oct 8), p 68

  4. Information regarding EMEA as downloaded from the World Wide Web in December 2003: http://www.emea.eu.int/humandocs/PDFs/EPAR/hepsera/610202en1.pdf

Abbreviations

(d)ATP4−:

(2′-deoxy)adenosine 5′-triphosphate

PMEA:

9-[2-(phosphonomethoxy)ethyl]adenine

8,8aPMEA:

8-[2-(phosphonomethoxy)ethyl]-8-azaadenine

9,8aPMEA:

9-[2-(phosphonomethoxy)ethyl]-8-azaadenine

I :

ionic strength

K a :

acidity constant

M2+:

divalent metal ion

References

  1. Tamm I, Folkers K, Shunk CH (1956) J Bacteriol 72:59–64

    CAS  PubMed  Google Scholar 

  2. Martin JC (ed) (1989) Nucleotide analogs as antiviral agents. (ACS symposium series 401) American Chemical Society, Washington, DC, pp 1–190

  3. Sigel RKO, Song B, Sigel H (1997) J Am Chem Soc 119:744–755

    Article  CAS  Google Scholar 

  4. Holý A (2003) Curr Pharm Des 9:2567–2592

    PubMed  Google Scholar 

  5. Holý A, Günter J, Dvořáková H, Masojídková M, Andrei G, Snoeck R, Balzarini J, De Clercq E (1999) J Med Chem 42:2064–2086

    Article  PubMed  Google Scholar 

  6. Holý A, Votruba I, Masojídková M, Andrei G, Snoeck R, Naesens L, De Clercq E, Balzarini J, (2002) J Med Chem 45:1918–1929

    Article  PubMed  Google Scholar 

  7. De Clercq E (1998) Collect Czech Chem Commun 63:449–479

    Article  Google Scholar 

  8. De Clercq E (1998) Collect Czech Chem Commun 63:480–506

    Article  Google Scholar 

  9. Keith KA, Hitchcock MJM, Lee WA, Holý A, Kern ER (2003) Antimicrob Agents Chemother 47:2193–2198

    Article  CAS  PubMed  Google Scholar 

  10. De Clercq E, Holý A, Rosenberg I, Sakuma T, Balzarini J, Maudgal PC (1986) Nature 323:464–467

    PubMed  Google Scholar 

  11. Tribolet R, Sigel H (1987) Eur J Biochem 163:353–363

    CAS  PubMed  Google Scholar 

  12. Aoki K (1996) Met Ions Biol Syst 32:91–134

    CAS  Google Scholar 

  13. Blindauer CA, Holý A, Dvořáková H, Sigel H (1997) J Chem Soc Perkin Trans 2 2353–2363

    Google Scholar 

  14. Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J (1994) Science 264:1891–1903

    Google Scholar 

  15. Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J (1996) Biochemistry 35:12762–12777

    Article  CAS  PubMed  Google Scholar 

  16. Brautigam CA, Steitz TA (1998) Curr Opinion Struct Biol 8:54–63

    Article  CAS  Google Scholar 

  17. Sigel H (1992) Inorg Chim Acta 198–200:1-11

  18. Sigel H (1990) Coord Chem Rev 100:453–539

    Article  CAS  Google Scholar 

  19. Sigel H, Song B, Blindauer CA, Kapinos LE, Gregáň F, Prónayová N (1999) Chem Commun 743–744

  20. Holý A, De Clercq E, Votruba I (1989) ACS Symp Ser 401:51–71

    Google Scholar 

  21. Holý A, Votruba I, Merta A, Černý J, Veselý J, Vlach J, Šedivá K, Rosenberg I, Otmar M, Hřebabecký H, Trávníček M, Vonka V, Snoeck R, De Clercq E (1990) Antiviral Res 13:295–311

    Article  PubMed  Google Scholar 

  22. Sigel H (1999) Pure Appl Chem 71:1727–1740

    CAS  Google Scholar 

  23. Sigel H (2004) Chem Soc Rev 33:191–200

    Article  CAS  PubMed  Google Scholar 

  24. Villemin D, Thibault-Starzyk F (1993) Synth Commun 23:1053–1059

    CAS  Google Scholar 

  25. Holý A, Rosenberg I, Dvořáková H (1990) Collect Czech Chem Commun 55:809–818

    Google Scholar 

  26. Holý A, Dvořáková H, Jindřich J, Masojídková M, Buděšínský M, Balzarini J, Andrei G, De Clercq E (1996) J Med Chem 39:4073–4088

    Article  PubMed  Google Scholar 

  27. Roblin RO Jr, Lampen JO, English JP, Cole QP, Vanghan JR Jr (1945) J Am Chem Soc 67:290–294

    CAS  Google Scholar 

  28. Kidder GW, Dewey VC, Parks RE Jr, Woodside GL (1949) Science 109:511–514

    CAS  Google Scholar 

  29. Singh P, Hodgson DJ (1977) J Am Chem Soc 99:4807–4815

    CAS  PubMed  Google Scholar 

  30. Sheldrick WS, Bell P (1986) Inorg Chim Acta 123:181–187

    Article  CAS  Google Scholar 

  31. Sheldrick WS, Bell P (1989) Inorg Chim Acta 160:265–271

    Article  CAS  Google Scholar 

  32. Franchetti P, Abu Sheikha G, Cappellacci L, Grifantini M, De Montis A, Piras G, Loi AG, La Colla P (1995) J Med Chem 38:4007–4013

    CAS  PubMed  Google Scholar 

  33. Dvořáková H, Holý A, Masojídková M, Votruba I, Balzarini J, Snoeck R, De Clercq E (1993) Collect Czech Chem Commun 58:253–255

    Google Scholar 

  34. Sigel H (1995) Coord Chem Rev 144:287–319

    Article  CAS  Google Scholar 

  35. Blindauer CA, Emwas AH, Holý A, Dvořáková H, Sletten E, Sigel H (1997) Chem Eur J 3:1526–1536

    CAS  Google Scholar 

  36. Blindauer CA, Holý A, Dvořáková H, Sigel H (1998) J Biol Inorg Chem 3:423–433

    Article  CAS  Google Scholar 

  37. Sigel H, Massoud SS, Tribolet R (1988) J Am Chem Soc 110:6857–6865

    CAS  Google Scholar 

  38. Sigel H (1993) Chem Soc Rev 22:255–267

    Article  CAS  Google Scholar 

  39. Sigel H (2004) Pure Appl Chem 76:375–388

    CAS  Google Scholar 

  40. Bianchi EM, Sajadi SAA, Song B, Sigel H (2003) Chem Eur J 9:881–892

    Article  CAS  Google Scholar 

  41. Gómez-Coca RB, Holý A, Vilaplana RA, González-Vílchez F, Sigel H (2004) Bioinorg Chem Applicat 2:(in press)

  42. Gómez-Coca RB, Kapinos LE, Holý A, Vilaplana RA, González-Vílchez F, Sigel H (2000) Metal Based Drugs 7:313–324

    Google Scholar 

  43. Sigel H, Zuberbühler AD, Yamauchi O (1991) Anal Chim Acta 255:63–72

    Article  CAS  Google Scholar 

  44. Irving HM, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475–488

    Article  CAS  Google Scholar 

  45. Blindauer CA, Sjåstad TI, Holý A, Sletten E, Sigel H (1999) J Chem Soc Dalton Trans 3661–3671

  46. Gómez-Coca RB, Kapinos LE, Holý A, Vilaplana RA, González-Vílchez F, Sigel H (2000) J Chem Soc Dalton Trans 2077–2084

  47. Martin RB, Sigel H (1988) Comments Inorg Chem 6:285–314

    CAS  Google Scholar 

  48. Kapinos LE, Song B, Sigel H (1999) Chem Eur J 5:1794–1802

    CAS  Google Scholar 

  49. Kapinos LE, Song B, Sigel H (1998) Inorg Chim Acta 280:50–56

    Article  CAS  Google Scholar 

  50. Kapinos LE, Sigel H (2002) Inorg Chim Acta 337:131–142

    Article  CAS  Google Scholar 

  51. Sigel H, Chen D, Corfù NA, Gregáň F, Holý A, Strašák M (1992) Helv Chim Acta 75:2634–2656

    CAS  Google Scholar 

  52. Yamauchi O, Odani A, Masuda H, Sigel H (1996) Met Ions Biol Syst 32:207–270

    CAS  Google Scholar 

  53. Scheller KH, Hofstetter F, Mitchell PR, Prijs B, Sigel H (1981) J Am Chem Soc 103:247–260

    CAS  Google Scholar 

  54. Kampf G, Kapinos LE, Griesser R, Lippert B, Sigel H (2002) J Chem Soc Perkin Trans 2 1320–1327

    Google Scholar 

  55. Sigel H (2004) Pure Appl Chem 76:(in press)

  56. Sheldrick WS, Heeb G (1991) Inorg Chim Acta 190:241–248

    Article  CAS  Google Scholar 

  57. Albert A (1969) J Chem Soc (C) 152–160

  58. Blindauer CA, Holý A, Sigel H (1999) Collect Czech Chem Commun 64:613–632

    Article  CAS  Google Scholar 

  59. Kapinos LE, Kampf G, Griesser R, Lippert B, Sigel H (1999) Chimia 53:348

    Google Scholar 

  60. Sigel H, Da Costa CP, Song B, Carloni P, Gregáň F (1999) J Am Chem Soc 121:6248–6257

    Article  CAS  Google Scholar 

  61. Da Costa CP, Sigel H (1999) J Biol Inorg Chem 4:508–514

    Article  PubMed  Google Scholar 

  62. Sigel H, Massoud SS, Corfù NA (1994) J Am Chem Soc 116:2958–2971

    CAS  Google Scholar 

  63. Sigel H, McCormick DB (1970) Acc Chem Res 3:201–208

    CAS  Google Scholar 

  64. Saha A, Saha N, Ji L, Zhao J, Gregáň F, Sajadi SAA, Song B, Sigel H (1996) J Biol Inorg Chem 1:231–238

    Article  CAS  Google Scholar 

  65. Sigel H, Song B (1996) Met Ions Biol Syst 32:135–205

    CAS  Google Scholar 

  66. Sajadi SAA, Song B, Gregáň F, Sigel H (1999) Inorg Chem 38:439–448

    Article  CAS  PubMed  Google Scholar 

  67. Irving HM, Williams RJP (1953) J Chem Soc: 3192–3210

    Article  Google Scholar 

  68. Sigel H, Lippert B (1998) Pure Appl Chem 70:845–854

    CAS  Google Scholar 

  69. Griesser R, Kampf G, Kapinos LE, Komeda S, Lippert B, Reedijk J, Sigel H (2003) Inorg Chem 42:32–41

    Article  CAS  PubMed  Google Scholar 

  70. Sigel H, Corfù NA, Ji L-n, Martin RB (1992) Comments Inorg Chem 13:35–59

    CAS  Google Scholar 

  71. Martin RB (1996) Met Ions Biol Syst 32:61–89

    CAS  Google Scholar 

  72. Sigel H, Kapinos LE (2000) Coord Chem Rev 200–202:563–594

  73. Massoud SS, Sigel H (1988) Inorg Chem 27:1447–1453

    Google Scholar 

  74. Franchetti P, Abu Sheikha G, Cappellacci L, Messini L, Grifantini M, Loi AG, De Montis A, Spiga MG, La Colla P (1994) Nucleosides Nucleotides 13:1707–1719

    CAS  Google Scholar 

  75. Merta A, Votruba I, Rosenberg I, Otmar M, Hřebabecký H, Bernaerts R, Holý A (1990) Antiviral Res 13:209–218

    Article  CAS  PubMed  Google Scholar 

  76. Robbins BL, Greenhaw J, Connelly MC, Fridland A (1995) Antimicrob Agents Chemother 39:2304–2308

    CAS  PubMed  Google Scholar 

  77. Kramata P, Votruba I, Otová B, Holý A (1996) Mol Pharmacol 49:1005–1011

    CAS  PubMed  Google Scholar 

  78. Birkuš G, Votruba I, Holý A, Otová B (1999) Biochem Pharmacol 58:487–492

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The competent technical assistance of Mrs Rita Baumbusch and Mrs Astrid Sigel in the preparation of this manuscript as well as stimulating discussions with members of the COST D20 programme are gratefully acknowledged. This study was supported by the Swiss National Science Foundation (H.S.) and the Programme of Targeted Projects (S4055109) of the Academy of Sciences of the Czech Republic (A.H.) as well as within the COST D20 programme by the Swiss Federal Office for Education and Science (H.S.) and the Ministry of Education of the Czech Republic (D20.002; A.H.). This study also received support from the University of Basel and it is further part of a research project (no 4055905) of the Institute of Organic Chemistry and Biochemistry (IOCB) in Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Sigel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Coca, R.B., Kapinos, L.E., Holý, A. et al. Quantification of isomeric equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). J Biol Inorg Chem 9, 961–972 (2004). https://doi.org/10.1007/s00775-004-0591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0591-7

Keywords

Navigation