Skip to main content
Log in

Potentiometric and Speciation Studies on the Complex Formation Reactions of [Pd(2-methylaminomethyl)-pyridine)(H2O)2]2+ with Some Bio-active Ligands and Displacement Reaction of Coordinated Inosine

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stoichiometry and stability constants of the complexes formed between [Pd(MAMP)(H2O)2]2+ and various biologically relevant ligands containing different functional groups were investigated. The ligands used are amino acids, peptides and DNA constituents. The results show the formation of 1:1 complexes with amino acids and peptides and the corresponding deprotonated amide species. Structural effects of peptides on amide deprotonation were investigated. The purine and pyrimidine bases uracil, uridine, cytosine, inosine, inosine 5′-monophosphate (5′-IMP) and thymine form 1:1 and 1:2 complexes. The concentration distribution of the various complex species was calculated as a function of pH. The effect of chloride ion concentration on the formation constant of CBDCA with Pd(MAMP)2+ was also reported. The results show ring opening of CBDCA and monodentate complexation of the DNA constituent with the formation of [Pd(MAMP)(CBDCA-O)DNA], where (CBDCA-O) represents cyclobutane dicarboxylate coordinated by one carboxylate oxygen. The equilibrium constant of the displacement reaction of coordinated inosine, as a typical DNA constituent, by SMC and/or methionine was calculated. The results are expected to contribute to the chemistry of antitumor agents. The calculated parameters of the optimized complexes support the measured formation constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CBDCA:

1,1-Cyclobutanedicarboxylic acid

MAMP:

2-(Methylamino)methylpyridine

5′-IMP:

Inosine-5′-monophosphate

5′-GMP:

Guanosine-5′-monophosphate

SMC:

S-methyl-l-cysteine

DMEN:

N,N′-Dimethylethylenediamine

Thr:

Threonine

Ser:

Serine

En:

Ethylenediamine

1,3-DAP:

1,3-Diaminopropane

BPY:

N,N′-Bipyridyl

α-Ala:

α-Alanine

β-Ala:

β-Alanine

PM3:

Parametric Method-3

UV:

Ultraviolet

HOMO:

Highest occupied molecular orbital energy

LUMO:

Lowest unoccupied molecular orbital energy

χ:

Mulliken electronegativity

Pi :

Chemical potential

η :

Global hardness

S :

Global softness

ω :

Global electrophilicity

References

  1. Rosenberg, B., Van Camp, L., Trasko, J.E., Mansour, V.H.: Platinum compounds: a new class of potent antitumour agent. Nature 222, 385–386 (1969)

    Article  CAS  Google Scholar 

  2. Wong, E., Giandomenico, C.M.: Current status of platinum-based antitumor drugs. Chem. Rev. 99, 2451–2466 (1999)

    Article  CAS  Google Scholar 

  3. Guo, Z., Sadler, P.J.: Medicinal inorganic chemistry. Adv. Inorg. Chem. 49, 183–306 (2000)

    Article  CAS  Google Scholar 

  4. Rosenberg, B.: In: Sigel, H. (ed.) Metal Ions in Biological Systems, vol. 11, pp. 127–196. Marcel Dekker, New York (1980)

    Google Scholar 

  5. Roberts, J.J.: In: Eichhorn, G.L., Marzilli, L.G. (eds.) Metal Ions in Genetic Information Transfer, vol. 11, pp. 273–332. Elsevier, Amsterdam (1981)

    Google Scholar 

  6. Gill, D.S.: In: Hacker, M.P., Douple, E.B. (eds.) Platinum Coordination Complexes in Cancer Chemotherapy, vol. 11, pp. 267–278. Nijhoff, Boston (1984)

    Chapter  Google Scholar 

  7. Heim, M.E.: In: Keppler, B.K. (ed.) Metal Complexes in Cancer Chemotherapy, vol. 11, p. 9. VCH, Weinheim (1993)

    Google Scholar 

  8. Summa, N., Soldatović, T., Dahlenburg, L., Bugarčić, Ž.D., van Eldik, R.: Kinetics and mechanism of the substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)] and their aqua analogues with L-methionine, glutathione and 5`-GMP. J. Biol. Inorg. Chem. 12, 1141–1150 (2007)

    Article  Google Scholar 

  9. Bugarčić, Ž.D., Nandibewoor, S.T., Hamza, M.S.A., Heinemann, F., Van Eldik, R.: Kinetics and mechanism of the reactions of Pd(II) complexes with azoles and diazines. Crystal structure of [Pd(bpma)(H2O)](ClO4)2·2H2O. Dalton Trans. 24, 2984–2990 (2006)

    Google Scholar 

  10. Lippert, B. (ed.): Cisplatin Chemistry and Biochemistry of Leading Anticancer Drugs. Wiley-VCH, Zürich (1999)

    Google Scholar 

  11. Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)

    Article  CAS  Google Scholar 

  12. Abd El-Karim, A.T., El-Sherif, A.A.: Potentiometric, thermodynamics and coordination properties for binary and mixed ligand complexes of copper(II) with imidazole-4-acetic acid and tryptophan or phenylalanine aromatic amino acids. J. Solution Chem. 45, 712–731 (2016)

    Article  CAS  Google Scholar 

  13. Abdelkarim, A.T., Al-Shomrani, M.M., Rayan, A.M., El-Sherif, A.A.: Mixed ligand complex formation of cetirizine drug with bivalent transition metal(II) ions in the presence of 2-aminomethylbenzimidazole: synthesis, structural, biological, pH-metric and thermodynamic studies. J. Solution Chem. 44, 1673–1704 (2015)

    Article  CAS  Google Scholar 

  14. Rayan, A.M., Abdlkarim, A.T., Ahmed, M.M., El-Sherif, A.A., Barakat, M.H.: Complex formation of cetirizine drug with bivalent transition metal(II) ions in the presence of alanine: synthesis, characterization, equilibrium studies, and biological activity studies. J. Coord. Chem. 68, 678–703 (2015)

    Article  CAS  Google Scholar 

  15. Abdelkarim, A.T., El-Sherif, A.A.: Physicochemical studies and biological activity of mixed ligand complexes involving bivalent transition metals with a novel Schiff base and glycine as a representative amino acid. J. Eur. Chem. 5, 328–333 (2014)

    Article  Google Scholar 

  16. Aljahdali, M.S., Abdelkarim, A.T., El-Sherif, A.A., Ahmed, M.M.: Synthesis, characterization, equilibrium studies, and biological activity of complexes involving copper(II), 2-aminomethylthiophenyl-4-bromosalicylaldehyde Schiff base, and selected amino acids. J. Coord. Chem. 67, 870–890 (2014)

    Article  CAS  Google Scholar 

  17. Aljahdali, M., El-Sherif, A.A., Shoukry, M.M., Hosny, W.M., Abd-Elmoghny, M.G.: Complex formation equilibria of unusual seven coordinate Fe(III) complexes with DNA constituents. J. Solution Chem. 42, 1663–1679 (2013)

    Article  CAS  Google Scholar 

  18. El-Sherif, A.A., Shoukry, M.M., Abd-Elgawad, M.M.A.: Protonation equilibria of some selected α-amino acids in DMSO–water mixture and their Cu(II)-complexes. J. Solution Chem. 42, 412–427 (2013)

    Article  CAS  Google Scholar 

  19. El-Sherif, A.A., Shoukry, M.M.: The palladium(II)-picolylamine promoted hydrolysis of amino acid esters; kinetic evidence for inter- and intramolecular mechanisms. J. Progr. React. Kinet. Mech 36, 215–226 (2011)

    Article  Google Scholar 

  20. El-Sherif, A.A.: Synthesis and characterization of some potential antitumor palladium(II) complexes of 2-aminomethylbenzimidazole and amino acids. J. Coord. Chem. 64, 2035–2055 (2011)

    Article  CAS  Google Scholar 

  21. El-Sherif, A.A., Shoukry, M.M., El-Bahnasawy, R.M., Ahmed, D.M.: Complex formation reactions of palladium(II)-1,3-diaminopropane with various biologically relevant ligands. Kinetics of hydrolysis of glycine methyl ester through complex formation. Cent. Eur. J. Chem. 8, 919–927 (2010)

    CAS  Google Scholar 

  22. Rau, T., Van Eldik, R.: In: Sigel, A., Sigel, H. (eds.) Metal Ions in Biological Systems, p. 340. Marcel Dekker, New York (1996)

    Google Scholar 

  23. Shoukry, M.M., Shehata, M.R., Abdel-Razik, A., Abdel-Karim, A.T.: Equilibrium studies of mixed ligand complexes involving (1,2-diaminopropane)-palladium(II) and some bioligands. Monatsh. Chem. 130, 409–423 (1999)

    CAS  Google Scholar 

  24. El-Sherif, A.A., Shoukry, M.M., van Eldik, R.: Complex-formation reactions and stability constants for mixed–ligand complexes of diaqua(2-picolylamine)palladium(II) with some bio-relevant ligands. J. Chem. Soc., Dalton Trans. 7, 1425–1432 (2003)

    Article  Google Scholar 

  25. Rau, T., Shoukry, M.M., van Eldik, R.: Complex formation and ligand substitution reactions of (2-picolylamine)palladium(II) with various biologically relevant ligands. Characterization of (2-picolylamine)(1,1-cyclobutanedicarboxylato)palladium(II). Inorg. Chem. 36, 1454–1463 (1997)

    Article  CAS  Google Scholar 

  26. Mohamed, M.M.A., Shoukry, M.M.: Complex formation reactions of (N,N′-dimethylethylenediamine) palladium(II) with various biologically relevant ligands. Polyhedron 20, 343–352 (2001)

    Article  CAS  Google Scholar 

  27. Bates, R.G.: Determination of pH-Theory and Practice, 2nd edn. Wiley, New York (1975)

    Google Scholar 

  28. Stark, J.G., Wallace, H.G. (eds.): Chemistry Data Book, p. 75. Murray, London (1975)

    Google Scholar 

  29. Gans, P., Sabatini, A., Vacca, A.: An improved computer program for the computation of formation constants from potentiometric data. Inorg. Chim. Acta 18, 237–239 (1976)

    Article  CAS  Google Scholar 

  30. Pettit, L.: University of Leeds, Personal Communication

  31. HyperChem version 7.5. Hypercube, Inc. (2003)

  32. Perrin, D.D.: Stability Constants of Metal-Ion Complexes: Part B Organic Ligands. Pergamon Press, Oxford (1979)

    Google Scholar 

  33. Shehata, M.R.: Mixed ligand complexes of diaquo(2,2′-bipyridine)palladium(II) with cyclobutane-1,1-dicarboxylic acid and DNA constituents. Trans. Met. Chem. 26, 198–204 (2001)

    Article  CAS  Google Scholar 

  34. Lim, M.C.: Mixed–ligand complexes of palladium. Diaqua(ethylenediamine)palladium(II) complexes of ethanolamine, l-serine, l-threonine, l-homoserine, and l-hydroxyproline. Inorg. Chem. 20, 1377–1379 (1981)

    Article  CAS  Google Scholar 

  35. El-Sherif, A.A.: Coordination chemistry of palladium(II) ternary complexes with relevant biomolecules. In: Stoichiometry and Research, The Importance of Quantity in Biomedicine, pp. 79–120. In-Tech Publisher, Rijeka (2012)

  36. Shehata, M.R., Shoukry, M.M., Nasr, F.M.H., van Eldik, R.: Complex-formation reactions of dicholoro(S-methyl-L-cysteine) palladium(II) with bio-relevant ligands. Labilization induced by S-donor chelates. Dalton Trans. 6, 779–786 (2008)

    Article  Google Scholar 

  37. Lim, M.C.: Mixed-ligand complexes of palladium(II). Part 1. Diaqua(ethylenediamine)palladium(II) complexes of glycylglycine and glycinamide. J. Chem. Soc., Dalton Trans. 1, 15–17 (1977)

    Article  Google Scholar 

  38. Martin, R.B.: Nucleoside sites for transition metal ion binding. Acc. Chem Res. 18, 32–38 (1985)

    Article  CAS  Google Scholar 

  39. Maskos, K.: Spectroscopic studies on the copper(II)–inosine system. J. Inorg Biochem. 25, 1–14 (1985)

    Article  CAS  Google Scholar 

  40. Sigel, H., Massoud, S.S., Corfu, N.A.: Comparison of the extent of macrochelate formation in complexes of divalent metal ions with guanosine (GMP2−), inosine (IMP2−), and adenosine 5’-monophosphate (AMP2−). The crucial role of N-7 basicity in metal ion–nucleic base recognition. J. Am. Chem. Soc. 116, 2958–2971 (1994)

    Article  CAS  Google Scholar 

  41. Shoukry, M.M., van Eldik, R.: Correlation between kinetic and thermodynamic complex-formation constants for the interaction of bis(amine)palladium(II) with inosine, inosine 5′-monophosphate and guanosine 5′-monophosphate. J. Chem. Soc., Dalton Trans. 13, 2673–2678 (1996)

    Article  Google Scholar 

  42. Shoukry, M.M., Hohmann, H., van Eldik, R.: Mechanistic information on the reaction of model palladium(II) complexes with purine nucleosides and 5′-nucleotides in reference to the antitumor activity of related platinum complexes. Inorg. Chim. Acta 198, 187–192 (1992)

    Article  Google Scholar 

  43. Ano, S.O., Intini, F.P., Natile, G., Marzilli, L.G.: Viewing early stages of guanine nucleotide attack on Pt(II) complexes designed with in-plane bulk to trap initial adducts. Relevance to cis-type Pt(II) anticancer drugs. J. Am. Chem. Soc. 119, 8570–8571 (1977)

    Article  Google Scholar 

  44. Kiser, D., Intini, F.P., Xu, Y., Natile, G., Marzilli, L.G.: Atropisomerization of cis-bis(5’GMP)–platinum(II)–diamine complexes with non-C2-symmetrical asymmetric diamine ligands containing NH groups directed to one side of the coordination plane. Inorg. Chem. 33, 4149–4158 (1994)

    Article  CAS  Google Scholar 

  45. Frey, U., Ranford, J.D., Sadler, P.J.: Ring-opening reactions of the anticancer drug carboplatin: NMR characterization of cis-[Pt(NH3)2(CBDCA-O)(5`-GMP-N7)] in solution. Inorg Chem. 32, 1333–1340 (1993)

    Article  CAS  Google Scholar 

  46. Rau, T., Alsfasser, R., Zahl, A., Van Eldik, R.: Structural and kinetic studies on the formation of platinum(II) and palladium(II) complexes with l-cysteine-derived ligands. Inorg. Chem. 37, 4223–4230 (1998)

    Article  CAS  Google Scholar 

  47. Lemma, K., Elmroth, S.K.C., Elding, L.I.: Substitution reactions of [Pt(dien)Cl]+, [Pt(dien)(GSMe)]2+, cis-[PtCl2(NH3)2] and cis-[Pt(NH3)2(GSMe)2]2+ (GSMe = S-methylglutathione) with some sulfur-bonding chemoprotective agents. J. Chem. Soc., Dalton Trans. 7, 1281–1286 (2002)

    Article  Google Scholar 

  48. Provosta, K., Bouvet-Mullera, D., Crauste-Manciet, S., Moscovicia, J., Olivid, L., Vlaicd, G., Michalowicza, A.: EXAFS structural study of platinum-based anticancer drugs degradation in presence of sulfur nucleophilic species. Biochimie 91, 1301–1306 (2009)

    Article  Google Scholar 

  49. Alden, W.W., Repta, A.J.: Exacerbation of cisplatin-induced nephrotoxicity by methionine. Chem. Biol. Interact. 48, 121–124 (1984)

    Article  CAS  Google Scholar 

  50. Pearson, R.G.: Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem. 54, 1423–1430 (1989)

    Article  CAS  Google Scholar 

  51. Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)

    Article  CAS  Google Scholar 

  52. Parr, R.G.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

  53. Chattaraj, P.K., Giri, S.: Stability, reactivity, and aromaticity of compounds of a multivalent superatom. J. Phys. Chem. A 111, 11116–11121 (2007)

    Article  CAS  Google Scholar 

  54. Speie, G., Csihony, J., Whalen, A.M., Pie-Pont, C.G.: Studies on aerobic reactions of ammonia/3,5-ditert-butylcatechol Schiff-base condensation products with copper, copper(I), and copper(II). Strong copper(II)-radical ferromagnetic exchange and observations on a unique N-N coupling reaction. Inorg. Chem. 35, 3519–3535 (1996)

    Article  Google Scholar 

  55. Aihara, J.: Reduced HOMO–LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103, 7487–7495 (1999)

    Article  CAS  Google Scholar 

  56. Haddon, R.C., Fukunaga, T.: Absolute hardness as a measure of aromaticity. Tetrahedron Lett. 29, 4843–4846 (1988)

    Article  Google Scholar 

  57. Parr, R.G., Chattara, P.K.: Principle of maximum hardness. J. Am. Chem. Soc. 113, 1854–1855 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abeer T. Abd El-Karim or Ahmed A. El-Sherif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Karim, A.T., El-Sherif, I.R., Hosny, W.M. et al. Potentiometric and Speciation Studies on the Complex Formation Reactions of [Pd(2-methylaminomethyl)-pyridine)(H2O)2]2+ with Some Bio-active Ligands and Displacement Reaction of Coordinated Inosine. J Solution Chem 46, 1024–1047 (2017). https://doi.org/10.1007/s10953-017-0621-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0621-z

Keywords

Navigation