Skip to main content

Advertisement

Log in

Peripheral quantitative computed tomography-derived bone parameters in men with impaired fasting glucose and diabetes

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Individuals with type 2 diabetes mellitus (T2DM) are at higher risk of fracture, but paradoxically do not have reduced bone mineral density. We investigated associations between peripheral quantitative computed tomography (pQCT) and glycaemia status.

Materials and methods

Participants were men (n = 354, age 33–92 year) from the Geelong Osteoporosis Study. Diabetes was defined by fasting plasma glucose (FPG) ≥ 7.0 mmol/L, self-report of diabetes and/or antihyperglycaemic medication use and impaired fasting glucose (IFG) as FPG 5.6–6.9 mmol/L. Bone measures were derived using pQCT (XCT2000) at 4% and 66% radial and tibial sites. Linear regression was used, adjusting for age, body mass index and socio-economic status.

Results

At the 4% site, men with T2DM had lower adjusted bone total area, trabecular area and cortical area at the radius (all − 6.2%) and tibia (all − 6.4%) compared to normoglycaemia. Cortical density was higher for T2DM at the radius (+ 5.8%) and tibia (+ 8.0%), as well as adjusted total bone density at the tibial site (+ 6.1%). At the 66% site, adjusted total bone area and polar stress strain index were lower for T2DM at the radius (− 4.3% and − 8.0%). Total density was also higher for T2DM (+ 1.2%).

Only cortical density at the 4% tibial site was different between IFG and normoglycaemia in adjusted analyses (+ 4.5%).

Conclusion

Men with T2DM had lower total bone area, trabecular area, cortical area and polar stress strain index than the other two groups; however, total density and cortical density were higher. Only one difference was observed between IFG and normoglycaemia; increased tibial cortical density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

Data are available upon reasonable request.

References

  1. de Liefde II, van der Klift M, de Laet CEDH, van Daele PLA, Hofman A, Pols HAP (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam study. Osteoporos Int 16:1713–1720. https://doi.org/10.1007/s00198-005-1909-1

    Article  Google Scholar 

  2. Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR, Dam TT, Barrett-Connor E, Palermo L, Orwoll ES, Cummings SR, Black DM, Schwartz AV (2014) Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 57:2057–2065. https://doi.org/10.1007/s00125-014-3289-6

    Article  CAS  Google Scholar 

  3. de Abreu LLF, Holloway-Kew KL, Mohebbi M, Sajjad MA, Kotowicz MA, Pasco JA (2019) Fracture risk in women with dysglycaemia: assessing effects of baseline and time-varying risk factors. Calcif Tissue Int 104:262–272. https://doi.org/10.1007/s00223-018-0498-x

    Article  CAS  Google Scholar 

  4. Looker AC, Eberhardt MS, Saydah SH (2016) Diabetes and fracture risk in older U.S. adults. Bone 82:9–15. https://doi.org/10.1016/j.bone.2014.12.008

    Article  Google Scholar 

  5. Botella Martinez S, Varo Cenarruzabeitia N, Escalada San Martin J, Calleja Canelas A (2016) The diabetic paradox: bone mineral density and fracture in type 2 diabetes. Endocrinol Nutr 63:495–501. https://doi.org/10.1016/j.endonu.2016.06.004

    Article  Google Scholar 

  6. Christensen JO, Svendsen OL (1999) Bone mineral in pre- and postmenopausal women with insulin-dependent and non-insulin-dependent diabetes mellitus. Osteoporos Int 10:307–311. https://doi.org/10.1007/s001980050232

    Article  CAS  Google Scholar 

  7. Baleanu F, Bergmann P, Hambye AS, Dekelver C, Iconaru L, Cappelle SI, Moreau M, Paesmans M, Karmali R, Body J-J (2019) Assessment of bone quality with trabecular bone score in type 2 diabetes mellitus: a study from the FRISBEE cohort. Int J Clin Pract 73:e13347. https://doi.org/10.1111/ijcp.13347

    Article  CAS  Google Scholar 

  8. Holloway-Kew KL, Marijanovic N, De Abreu LLF, Sajjad MA, Pasco JA, Kotowicz MA (2019) Bone mineral density in diabetes and impaired fasting glucose. Osteoporos Int 30:1799–1806. https://doi.org/10.1007/s00198-019-05108-1

    Article  CAS  Google Scholar 

  9. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27:301–308

    Article  Google Scholar 

  10. Choi YJ, Ock SY, Chung YS (2016) Trabecular bone score (TBS) and TBS-adjusted fracture risk assessment tool are potential supplementary tools for the discrimination of morphometric vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Densitom 19:507–514. https://doi.org/10.1016/j.jocd.2016.04.001

    Article  Google Scholar 

  11. Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D (2018) Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD registry. J Bone Miner Res 33:1923–1930. https://doi.org/10.1002/jbmr.3538

    Article  Google Scholar 

  12. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312. https://doi.org/10.1016/j.jocd.2011.05.005

    Article  Google Scholar 

  13. Bonaccorsi G, Fila E, Messina C, Maietti E, Ulivieri FM, Caudarella R, Greco P, Guglielmi G (2016) Comparison of trabecular bone score and hip structural analysis with FRAX(R) in postmenopausal women with type 2 diabetes mellitus. Aging Clin Exp Res 29:951–957. https://doi.org/10.1007/s40520-016-0634-2

    Article  Google Scholar 

  14. Ho-Pham LT, Nguyen TV (2019) Association between trabecular bone score and type 2 diabetes: a quantitative update of evidence. Osteoporos Int 30:2079–2085. https://doi.org/10.1007/s00198-019-05053-z

    Article  CAS  Google Scholar 

  15. Ho-Pham LT, Tran B, Do AT, Nguyen TV (2019) Association between pre-diabetes, type 2 diabetes and trabecular bone score: the Vietnam osteoporosis study. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2019.107790

    Article  Google Scholar 

  16. Holloway KL, De Abreu LLF, Hans D, Kotowicz MA, Sajjad MA, Hyde NK, Pasco JA (2018) Trabecular bone score in men and women with impaired fasting glucose and diabetes. Calcif Tissue Int 102:32–40. https://doi.org/10.1007/s00223-017-0330-z

    Article  CAS  Google Scholar 

  17. Dawson-Hughes B, Bouxsein M, Shea K (2019) Bone material strength in normoglycemic and hyperglycemic black and white older adults. Osteoporos Int 30:2429–2435

    Article  CAS  Google Scholar 

  18. Farr JN, Drake MT, Amin S, Joseph Melton III L, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29:787–795

    Article  Google Scholar 

  19. Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ, Dworakowski E, Jiang H, Silverberg SJ, Rubin MR (2016) Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab 101:2502–2510. https://doi.org/10.1210/jc.2016-1437

    Article  CAS  Google Scholar 

  20. Holloway-Kew KL, Betson A, Rufus-Membere PG, Gaston J, Diez-Perez A, Kotowicz MA, Pasco JA (2021) Impact microindentation in men with impaired fasting glucose and type 2 diabetes. Bone 142:115685. https://doi.org/10.1016/j.bone.2020.115685

    Article  CAS  Google Scholar 

  21. Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellstrom D, Rudang R, Zoulakis M, Wallander M, Darelid A, Lorentzon M (2017) Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res 32:1062–1071. https://doi.org/10.1002/jbmr.3057

    Article  Google Scholar 

  22. Dumitru N, Carsote M, Cocolos A, Petrova E, Olaru M, Caragheorgheopol A, Dumitrache C, Ghemigian A (2018) Metabolic and bone profile in postmenopausal women with and without type 2 diabetes: a cross-sectional study. Rom J Intern Med. https://doi.org/10.2478/rjim-2018-0036

    Article  Google Scholar 

  23. Lerchbaum E, Schwetz V, Nauck M, Volzke H, Wallaschofski H, Hannemann A (2015) Lower bone turnover markers in metabolic syndrome and diabetes: the population-based study of health in Pomerania. Nutr Metab Cardiovasc Dis 25:458–463. https://doi.org/10.1016/j.numecd.2015.02.002

    Article  CAS  Google Scholar 

  24. Reyes-García R, Rozas-Moreno P, López-Gallardo G, García-Martín A, Varsavsky M, Avilés-Perez MD, Muñoz-Torres M (2013) Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol 50:47–52. https://doi.org/10.1007/s00592-011-0347-0

    Article  CAS  Google Scholar 

  25. Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P (2014) Biochemical markers of bone turnover in diabetes patients—a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 25:1697–1708. https://doi.org/10.1007/s00198-014-2676-7

    Article  CAS  Google Scholar 

  26. Holloway-Kew KL, De Abreu LLF, Kotowicz MA, Sajjad MA, Pasco JA (2019) Bone turnover markers in men and momen with impaired fasting glucose and diabetes. Calcif Tissue Int 104:599–604. https://doi.org/10.1007/s00223-019-00527-y

    Article  CAS  Google Scholar 

  27. Pawlowska M, Bilezikian JP (2016) Beyond DXA: advances in clinical applications of new bone imaging technology. Endocr Pr 22:990–998. https://doi.org/10.4158/ep151019.ra

    Article  Google Scholar 

  28. Ho-Pham LT, Chau PMN, Do AT, Nguyen HC, Nguyen TV (2018) Type 2 diabetes is associated with higher trabecular bone density but lower cortical bone density: the Vietnam osteoporosis study. Osteoporos Int 29:2059–2067. https://doi.org/10.1007/s00198-018-4579-5

    Article  CAS  Google Scholar 

  29. Petit MA, Paudel ML, Taylor BC, Hughes JM, Strotmeyer ES, Schwartz AV, Cauley JA, Zmuda JM, Hoffman AR, Ensrud KE (2010) Bone mass and strength in older men with type 2 diabetes: the osteoporotic fractures in men study. J Bone Miner Res 25:285–291. https://doi.org/10.1359/jbmr.090725

    Article  Google Scholar 

  30. Dennison EM, Jameson KA, Edwards MH, Denison HJ, Aihie Sayer A, Cooper C (2014) Peripheral quantitative computed tomography measures are associated with adult fracture risk: the Hertfordshire cohort study. Bone 64:13–17. https://doi.org/10.1016/j.bone.2014.03.040

    Article  CAS  Google Scholar 

  31. Sheu Y, Zmuda JM, Boudreau RM, Petit MA, Ensrud KE, Bauer DC, Gordon CL, Orwoll ES, Cauley JA, Group for the OF in M (MrOS) R (2011) Bone strength measured by peripheral quantitative computed tomography and the risk of Nonvertebral fractures: The osteoporotic fractures in men (MrOS) study. J Bone Miner Res 26:63–71. https://doi.org/10.1002/jbmr.172

    Article  Google Scholar 

  32. Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: geelong osteoporosis study. Int J Epidemiol 41:1565–1575

    Article  Google Scholar 

  33. Henry MJ, Pasco JA, Nicholson GC, Seeman E, Kotowicz MA (2000) Prevalence of osteoporosis in Australian women: Geelong osteoporosis study. J Clin Densitom 3:261–268

    Article  CAS  Google Scholar 

  34. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, Kitzmiller J, Knowler WC, Lebovitz H, Lernmark A, Nathan D, Palmer J, Rizza R, Saudek C, Shaw J, Steffes M, Stern M, Tuomilehto J, Zimmet P (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167

    Article  Google Scholar 

  35. Blew RM, Lee VR, Farr JN, Schiferl DJ, Going SB (2014) Standardizing evaluation of pQCT image quality in the presence of subject movement: qualitative versus quantitative assessment. Calcif Tissue Int 94:202–211. https://doi.org/10.1007/s00223-013-9803-x

    Article  CAS  Google Scholar 

  36. Wong AK (2016) A comparison of peripheral imaging technologies for bone and muscle quantification: a technical review of image acquisition. J Musculoskelet Neuronal Interact 16:265–282

    CAS  Google Scholar 

  37. Giles GG, Ireland PD (1996) Dietary Questionnaire for Epidemiological Studies (Version 2). Melbourne, Cancer Counc Victoria

    Google Scholar 

  38. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381. https://doi.org/10.1016/j.jbi.2008.08.010

    Article  Google Scholar 

  39. Zhukouskaya VV, Eller-Vainicher C, Gaudio A, Privitera F, Cairoli E, Ulivieri FM, Palmieri S, Morelli V, Grancini V, Orsi E, Masserini B, Spada AM, Fiore CE, Chiodini I (2016) The utility of lumbar spine trabecular bone score and femoral neck bone mineral density for identifying asymptomatic vertebral fractures in well-compensated type 2 diabetic patients. Osteoporos Int 27:49–56. https://doi.org/10.1007/s00198-015-3212-0

    Article  CAS  Google Scholar 

  40. Patel S, Hyer S, Tweed K, Kerry S, Allan K, Rodin A, Barron J (2008) Risk factors for fractures and falls in older women with type 2 diabetes mellitus. Calcif Tissue Int 82:87–91

    Article  CAS  Google Scholar 

  41. Oei L, Zillikens MC, Dehghan A, Buitendijk GHS, Castaño-Betancourt MC, Estrada K, Stolk L, Oei EHG, van Meurs JBJ, Janssen JAMJL, Hofman A, van Leeuwen JPTM, Witteman JCM, Pols HAP, Uitterlinden AG, Klaver CCW, Franco OH, Rivadeneira F (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control. Diabetes Care 36:1619–1628. https://doi.org/10.2337/dc12-1188

    Article  CAS  Google Scholar 

  42. Anderson KB, Tembo MC, Sui SX, Hyde NK, Rufus PG, Pasco JA, Kotowicz MA, Holloway-Kew KL (2021) Normative data for peripheral quantitative computed tomography (pQCT) bone parameters in Australian men. Bone Reports 15:101107. https://doi.org/10.1016/j.bonr.2021.101107

    Article  Google Scholar 

  43. Paul J, Devarapalli V, Johnson JT, Cherian KE, Jebasingh FK, Asha HS, Kapoor N, Thomas N, Paul TV (2021) Do proximal hip geometry, trabecular microarchitecture, and prevalent vertebral fractures differ in postmenopausal women with type 2 diabetes mellitus? A cross-sectional study from a teaching hospital in southern India. Osteoporos Int 32:1585–1593. https://doi.org/10.1007/s00198-021-05855-0

    Article  CAS  Google Scholar 

  44. Jiajue R, Jiang Y, Wang O, Li M, Xing X, Cui L, Yin J, Xu L, Xia W (2014) Suppressed bone turnover was associated with increased osteoporotic fracture risks in non-obese postmenopausal Chinese women with type 2 diabetes mellitus. Osteoporos Int 25:1999–2005. https://doi.org/10.1007/s00198-014-2714-5

    Article  CAS  Google Scholar 

  45. Zhang L, Liu Y, Wang D, Zhao X, Qiu Z, Ji H, Rong H (2009) Bone biomechanical and histomorphometrical investment in type 2 diabetic Goto-Kakizaki rats. Acta Diabetol 46:119–126. https://doi.org/10.1007/s00592-008-0068-1

    Article  Google Scholar 

  46. Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, Kousteni S, Rubin MR (2012) Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 97:3240–3250. https://doi.org/10.1210/jc.2012-1546

    Article  CAS  Google Scholar 

  47. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308. https://doi.org/10.1016/j.cell.2010.06.003

    Article  CAS  Google Scholar 

  48. Malekzadeh B, Tengvall P, Ohrnell L-O, Wennerberg A, Westerlund A (2013) Effects of locally administered insulin on bone formation in non-diabetic rats. J Biomed Mater Res A 101:132–137. https://doi.org/10.1002/jbm.a.34313

    Article  CAS  Google Scholar 

  49. de Waard EAC, de Jong JJA, Koster A, Savelberg HHCM, van Geel TA, Houben AJHM, Schram MT, Dagnelie PC, van der Kallen CJ, Sep SJS, Stehouwer CDA, Schaper NC, Berendschot TTJM, Schouten JSAG, Geusens PPMM, van den Bergh JPW (2018) The association between diabetes status, HbA1c, diabetes duration, microvascular disease, and bone quality of the distal radius and tibia as measured with high-resolution peripheral quantitative computed tomography—the Maastricht study. Osteoporos Int 29:2725–2738. https://doi.org/10.1007/s00198-018-4678-3

    Article  CAS  Google Scholar 

  50. Samelson EJ, Demissie S, Cupples LA, Zhang X, Xu H, Liu C-T, Boyd SK, McLean RR, Broe KE, Kiel DP, Bouxsein ML (2018) Diabetes and deficits in cortical bone density, microarchitecture, and bone size: Framingham HR-pQCT study. J Bone Miner Res 33:54–62. https://doi.org/10.1002/jbmr.3240

    Article  Google Scholar 

  51. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM (2013) Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 28:313–324. https://doi.org/10.1002/jbmr.1763

    Article  Google Scholar 

  52. Patsch JM, Burghardt AJ, Kazakia G, Majumdar S (2011) Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci 1240:77–87. https://doi.org/10.1111/j.1749-6632.2011.06282.x

    Article  Google Scholar 

  53. Heilmeier U, Cheng K, Pasco C, Parrish R, Nirody J, Patsch JM, Zhang CA, Joseph GB, Burghardt AJ, Schwartz AV, Link TM, Kazakia G (2016) Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos Int 27:2791–2802. https://doi.org/10.1007/s00198-016-3614-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Graham Giles of the Cancer Epidemiology Centre of The Cancer Council Victoria, for permission to use the Dietary Questionnaire for Epidemiological Studies (Version 2), Melbourne: The Cancer Council Victoria 1996. The Geelong Osteoporosis Study was supported by grants from the National Health and Medical Research Council (NHMRC; projects 299831, 628582), but they played no role in the collection or interpretation of data. KLH-K was supported by an Alfred Deakin Postdoctoral Research Fellowship; KBA by an Australian Government Research Training Program Scholarship; MT by a Deakin Postgraduate Scholarship; SXS and NKH by Dean’s Research Postdoctoral Fellowships (Deakin University). JWH was supported by a Deakin University Postgraduate Research Scholarship.

Funding

National Health and Medical Research Council, 299831, 628582, Julie Pasco; Deakin University, Alfred Deakin Postdoctoral Research Fellowship, Kara Holloway-Kew; Australian Government Research Training Program Scholarship, Kara Anderson; Deakin Postgraduate Scholarship, Monica Tembo; Dean’s Research Postdoctoral Fellowship, Sophia Sui; Dean’s Research Postdoctoral Fellowship, Natalie Hyde; Deakin University Postgraduate Research Scholarship, Jacob Harland.

Author information

Authors and Affiliations

Authors

Contributions

KLH-K: study planning, data collection and analysis, interpretation, manuscript writing. KBA: data collection and management, critical reviewing of the manuscript. MCT: data collection and management, critical reviewing of the manuscript. SXS: data collection and management, critical reviewing of the manuscript. JWH: data interpretation and critical reviewing of the manuscript. NKH: critical reviewing of the manuscript. MAK: data interpretation and critical reviewing of the manuscript. JAP: study planning, funding acquisition, data interpretation and critical reviewing of the manuscript.

Corresponding author

Correspondence to Kara L. Holloway-Kew.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holloway-Kew, K.L., Anderson, K.B., Tembo, M.C. et al. Peripheral quantitative computed tomography-derived bone parameters in men with impaired fasting glucose and diabetes. J Bone Miner Metab 41, 131–142 (2023). https://doi.org/10.1007/s00774-022-01389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01389-5

Keywords

Navigation