Skip to main content

Advertisement

Log in

Type 2 diabetes is associated with higher trabecular bone density but lower cortical bone density: the Vietnam Osteoporosis Study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

It is not clear why type 2 diabetes (T2D) has an increased risk of fracture despite higher areal bone mineral density. This study showed that compared with controls, T2D patients had higher trabecular bone density but lower cortical bone density, resulting in a lower bone strength.

Introduction

To define the association between type 2 diabetes and bone architecture and measures of bone strength.

Methods

The study was part of the Vietnam Osteoporosis Study, in which 1115 women and 614 men aged ≥ 30 were randomly recruited from Ho Chi Minh City. HbA1c levels were measured with analyzers ADAMS™ A1c HA-8160 (Arkray, Kyoto, Japan). The diagnosis of T2D was made if HbA1c was ≥ 6.5%. Trabecular and cortical volumetric bone density (vBMD) was measured in the forearm and leg by a pQCT XCT2000 (Stratec, Germany). Polar stress strain index (pSSI) was derived from the pQCT measurements. Difference in bone parameters between T2D and non-diabetic individuals was assessed by the number of standard deviations (effect size [ES]) by the propensity score analysis.

Results

The prevalence of T2D was ~ 8%. The results of propensity score matching for age, sex, and body mass index in 137 pairs of diabetic and non-diabetic individuals showed that T2D patients had significantly higher distal radius trabecular vBMD (ES 0.26; 95% CI, 0.02 to 0.50), but lower cortical vBMD (ES − 0.22; − 0.46 to 0.00) and reduced pSSI (ES − 0.23; − 0.47 to − 0.02) compared with non-diabetic individuals. Multiple linear regression analysis based on the entire sample confirmed the results of the propensity score analysis.

Conclusion

Compared with non-diabetic individuals, patients with T2D have greater trabecular but lower cortical vBMD which leads to lower bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chan MY, Frost SA, Center JR, Eisman JA, Nguyen TV (2014) Relationship between body mass index and fracture risk is mediated by bone mineral density. J Bone Miner Res 29(11):2327–2335

    Article  PubMed  Google Scholar 

  2. Ho-Pham LT, Nguyen UD, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99(1):30–38

    Article  PubMed  CAS  Google Scholar 

  3. Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellström D, Rudäng R, Zoulakis M, Wallander M, Darelid A, Lorentzon M (2017) Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res 32(5):1062–1071

    Article  PubMed  Google Scholar 

  4. Petit MA, Paudel ML, Taylor BC, Hughes JM, Strotmeyer ES, Schwartz AV, Cauley JA, Zmuda JM, Hoffman AR, Ensrud KE, Osteoporotic Fractures in Men (MrOs) Study Group (2010) Bone mass and strength in older men with type 2 diabetes: the Osteoporotic Fractures in Men Study. J Bone Miner Res 25(2):285–291

    Article  PubMed  Google Scholar 

  5. Fan Y, Wei F, Lang Y, Liu Y (2016) Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int 27(1):219–228

    Article  PubMed  CAS  Google Scholar 

  6. Wallander M, Axelsson KF, Nilsson AG, Lundh D, Lorentzon M (2017) Type 2 diabetes and risk of hip fractures and non-skeletal fall injuries in the elderly: a study from the Fractures and Fall Injuries in the Elderly Cohort (FRAILCO). J Bone Miner Res 32(3):449–460

    Article  PubMed  CAS  Google Scholar 

  7. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, Yu Q, Zillikens MC, Gao X, Rivadeneira F (2012) Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 27(5):319–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bilezikian JP, Josse RG, Eastell R, Lewiecki EM, Miller CG, Wooddell M, Northcutt AR, Kravitz BG, Paul G, Cobitz AR, Nino AJ, Fitzpatrick LA (2013) Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. J Clin Endocrinol Metab 98(4):1519–1528

    Article  PubMed  CAS  Google Scholar 

  9. Gilbert MP, Pratley RE (2015) The impact of diabetes and diabetes medications on bone health. Endocr Rev 36(2):194–213

    Article  PubMed  CAS  Google Scholar 

  10. Cointry GR, Ferretti JL, Reina PS, Nocciolino LM, Rittweger J, Capozza RF (2014) The pQCT ‘Bone Strength Indices’ (BSIs, SSI). Relative mechanical impact and diagnostic value of the indicators of bone tissue and design quality employed in their calculation in healthy men and pre- and post-menopausal women. J Musculoskelet Neuronal Interact 14(1):29–40

    PubMed  CAS  Google Scholar 

  11. Ho-Pham LT, Nguyen TV (2017) The Vietnam Osteoporosis Study: rationale and design. Osteoporos Sarcopenia 2:90–97

    Article  Google Scholar 

  12. International Expert, C (2009) International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32(7):1327–1334

    Article  CAS  Google Scholar 

  13. American Diabetes A (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69

    Article  Google Scholar 

  14. Ward KA et al (2005) Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 36(6):1012–1018

    Article  PubMed  CAS  Google Scholar 

  15. Hasegawa Y, Schneider P, Reiners C (2001) Age, sex, and grip strength determine architectural bone parameters assessed by peripheral quantitative computed tomography (pQCT) at the human radius. J Biomech 34(4):497–503

    Article  PubMed  CAS  Google Scholar 

  16. D'Agostino RB Jr (1998) Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17(19):2265–2281

    Article  PubMed  Google Scholar 

  17. Austin PC (2008) The performance of different propensity-score methods for estimating relative risks. J Clin Epidemiol 61(6):537–545

    Article  PubMed  Google Scholar 

  18. R Development Core Team. R: a language and environment for statistical computing 2007 23/4/2007]; Available from: http://www.R-project.org

  19. Dennison EM, Jameson KA, Edwards MH, Denison HJ, Aihie Sayer A, Cooper C (2014) Peripheral quantitative computed tomography measures are associated with adult fracture risk: the Hertfordshire Cohort Study. Bone 64:13–17

    Article  PubMed  CAS  Google Scholar 

  20. Sheu Y, Zmuda JM, Boudreau RM, Petit MA, Ensrud KE, Bauer DC, Gordon CL, Orwoll ES, Cauley JA, for the Osteoporotic Fractures in Men (MrOS) Research Group (2011) Bone strength measured by peripheral quantitative computed tomography and the risk of nonvertebral fractures: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 26(1):63–71

    Article  PubMed  Google Scholar 

  21. Melton LJ 3rd et al (2008) A bone structural basis for fracture risk in diabetes. J Clin Endocrinol Metab 93(12):4804–4809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Osima M, Kral R, Borgen TT, Høgestøl IK, Joakimsen RM, Eriksen EF, Bjørnerem Å (2017) Women with type 2 diabetes mellitus have lower cortical porosity of the proximal femoral shaft using low-resolution CT than nondiabetic women, and increasing glucose is associated with reduced cortical porosity. Bone 97:252–260

    Article  PubMed  CAS  Google Scholar 

  23. Compston J (2018) Type 2 diabetes mellitus and bone. J Intern Med 283(2):140–153

    Article  PubMed  CAS  Google Scholar 

  24. van Daele PL et al (1995) Bone density in non-insulin-dependent diabetes mellitus. The Rotterdam Study. Ann Intern Med 122(6):409–414

    Article  PubMed  Google Scholar 

  25. Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Zmuda JM, Bauer DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB, Health ABC Study (2004) Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: the Health, Aging, and Body Composition Study. J Bone Miner Res 19(7):1084–1091

    Article  PubMed  Google Scholar 

  26. Rubin DB (2010) Propensity score methods. Am J Ophthalmol 149(1):7–9

    Article  PubMed  Google Scholar 

  27. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91(9):3404–3410

    Article  PubMed  CAS  Google Scholar 

  28. Dytfeld J, Michalak M (2017) Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin Exp Res 29(2):301–309

    Article  PubMed  Google Scholar 

  29. Wang MC, Bachrach LK, van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37(4):474–481

    Article  PubMed  CAS  Google Scholar 

  30. Abdullah A, Peeters A, de Courten M, Stoelwinder J (2010) The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract 89(3):309–319

    Article  PubMed  Google Scholar 

  31. Rakel A et al (2008) Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab 34(3):193–205

    Article  PubMed  CAS  Google Scholar 

  32. Nyman JS, Even JL, Jo CH, Herbert EG, Murry MR, Cockrell GE, Wahl EC, Bunn RC, Lumpkin CK Jr, Fowlkes JL, Thrailkill KM (2011) Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone 48(4):733–740

    Article  PubMed  Google Scholar 

  33. Hampson G et al (1998) Bone mineral density, collagen type 1 alpha 1 genotypes and bone turnover in premenopausal women with diabetes mellitus. Diabetologia 41(11):1314–1320

    Article  PubMed  CAS  Google Scholar 

  34. Secchiero P, Corallini F, Pandolfi A, Consoli A, Candido R, Fabris B, Celeghini C, Capitani S, Zauli G (2006) An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol 169(6):2236–2244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-Williams C, Carew KS, Mane S, Najmabadi H, Wu D, Lifton RP (2007) LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315(5816):1278–1282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chan JC et al (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301(20):2129–2140

    Article  PubMed  CAS  Google Scholar 

  37. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2007) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18(8):1109–1117

    Article  PubMed  CAS  Google Scholar 

  38. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19(10):1431–1444

    Article  PubMed  CAS  Google Scholar 

  39. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Mrs. Tran Thi Ngoc Trang and Fr Pham Ba Lam for coordinating the recruitment of participants. We also thank doctors and medical students of the Pham Ngoc Thach University of Medicine for the data collection and clinical measurements.

Funding

This research is funded by Foundation for Science and Technology Development of Ton Duc Thang University (FOSTECT, http://fostect.tdt.edu.vn), grant number FOSTECT.2014.BR.09, and a grant from the Department of Science and Technology of Ho Chi Minh City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.T. Ho-Pham.

Ethics declarations

The study’s procedure and protocol were approved by the research and ethics committee of the People’s Hospital 115. The study was conducted according to the ethical principles of the Declaration of Helsinki, and all participants gave written informed consent.

Conflicts of interest

None.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho-Pham, L., Chau, P., Do, A. et al. Type 2 diabetes is associated with higher trabecular bone density but lower cortical bone density: the Vietnam Osteoporosis Study. Osteoporos Int 29, 2059–2067 (2018). https://doi.org/10.1007/s00198-018-4579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4579-5

Keywords

Navigation