Skip to main content

Advertisement

Log in

Post-surgery cholecystectomy, hepatectomy, and pancreatectomy patients increase the risk of osteoporotic vertebral fracture

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Data is currently lacking regarding association between the cholecystectomy/hepatectomy/pancreatectomy and the development of osteoporotic fracture. A retrospective cohort study was conducted to investigate the relationship between cholecystectomy/hepatectomy/pancreatectomy and the subsequent risk of developing osteoporotic fracture.

Materials and Methods

Patients having undergone cholecystectomy, hepatectomy, or pancreatectomy between 2000 and 2012 were selected from the All Population Based Hospitalization File as the surgery cohort (n = 304,081), which was frequency matched with the control cohort (n = 304,081). The Cox proportional hazard model and Kaplan–Meier analysis were applied to measure the hazard ratios and the cumulative incidence of osteoporotic fracture.

Results

A total of 1136 patients in the surgery cohort and 1179 patients in the control cohort were newly diagnosed with osteoporotic fracture. The overall osteoporotic fracture risk in the surgery cohort was 1.12-fold higher [95% confidence interval (CI), 1.03–1.21]. Specifically, surgery cohort had higher vertebral fracture risk than non-surgery cohort [adjusted hazard ratio (aHR) 1.12, Cl, 1.03–1.22]. In addition, patients underwent cholecystectomy (includes open and laparoscopic approaches), hepatectomy (only open approach), and pancreatectomy group (only open approach) were 1.10 (95% CI, 1.01–1.19), 1.49 (95% CI, 1.10–2.01), and 1.88 (95% CI, 1.23–2.87) times more likely to develop osteoporotic fracture, respectively. No significant difference of osteoporotic fracture risk was observed between open and laparoscopic cholecystectomy. The risk of osteoporotic fracture was significantly increased in females, patients aged ≥ 40 years old, and patients with some comorbidity.

Conclusions

Patients post cholecystectomy, hepatectomy, or pancreatectomy significantly increased risk of developing osteoporotic fracture, suggesting closer attention in post-operative care is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

aHR:

Adjusted hazard ratio

BMD:

Bone mineral density

CAD:

Coronary artery disease

CIs:

Confidence intervals

DXA:

Dual-energy X-ray absorptiometry

CKD:

Chronic kidney disease

COPD:

Chronic obstructive pulmonary disease

HRs:

Hazard ratios

ICD-9-CM:

International Classification of Diseases, 9th Revision, Clinical Modification

NHI:

National Health Insurance

NHIRD:

National Health Insurance Research Database

25-OH vitamin D:

25-Hydroxy vitamin D

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. The Lancet 377:1276–1287. https://doi.org/10.1016/s0140-6736(10)62349-5

    Article  CAS  Google Scholar 

  2. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dyer SM, Crotty M, Fairhall N, Magaziner J, Beaupre LA, Cameron ID, Sherrington C, Fragility Fracture Network Rehabilitation Research Special Interest G (2016) A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr 16:158. https://doi.org/10.1186/s12877-016-0332-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leibson CL, Tosteson ANA, Gabriel SE, Ransom JE, Melton LJ (2002) Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc 50:1644–1650. https://doi.org/10.1046/j.1532-5415.2002.50455.x

    Article  PubMed  Google Scholar 

  5. Jeremiah MP, Unwin BK, Greenawald MH, Casiano VE (2015) Diagnosis and management of osteoporosis (in eng). Am Fam Physician 92:261–268

    PubMed  Google Scholar 

  6. Bikle DD (2012) Vitamin D and bone. Curr Osteoporos Rep 10:151–159. https://doi.org/10.1007/s11914-012-0098-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heaney RP, Dowell MS, Hale CA, Bendich A (2003) Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 22:142–146. https://doi.org/10.1080/07315724.2003.10719287

    Article  CAS  PubMed  Google Scholar 

  8. Bischoff-Ferrari HA, Kiel DP, Dawson-Hughes B, Orav JE, Li R, Spiegelman D, Dietrich T, Willett WC (2009) Dietary calcium and serum 25-hydroxyvitamin D status in relation to BMD among US adults. J Bone Miner Res 24:935–942. https://doi.org/10.1359/jbmr.081242

    Article  CAS  PubMed  Google Scholar 

  9. Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB (2004) Effect of vitamin D on falls: a meta-analysis. JAMA 291:1999–2006. https://doi.org/10.1001/jama.291.16.1999

    Article  CAS  PubMed  Google Scholar 

  10. Handzlik-Orlik G, Holecki M, Wilczynski K, Dulawa J (2016) Osteoporosis in liver disease: pathogenesis and management. Ther Adv Endocrinol Metab 7:128–135. https://doi.org/10.1177/2042018816641351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marcinowska-Suchowierska EB, Talalaj MJ, Kłodarczyk AW, Bielecki K, Zawadzki JJ, Brzozowski R (1995) Calcium/phosphate/vitamin D homeostasis and bone mass in patients after gastrectomy, vagotomy, and cholecystectomy. World J Surg 19:597–601. https://doi.org/10.1007/bf00294730

    Article  CAS  PubMed  Google Scholar 

  12. F-mL FM, Brandt LJ (eds) (2010) Sleisenger and fordtran’s gastrointestinal and liver disease, 9th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  13. Hollander D, Muralidhara KS, Zimmerman A (1978) Vitamin D-3 intestinal absorption in vivo: influence of fatty acids, bile salts, and perfusate pH on absorption (in eng). Gut 19:267–272. https://doi.org/10.1136/gut.19.4.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Polat HB, Beyazal MS (2018) The effect of cholecystectomy on 25-hydroxyvitamin D levels and bone mineral density in postmenopausal women. Arch Osteoporos 13:61. https://doi.org/10.1007/s11657-018-0458-0

    Article  PubMed  Google Scholar 

  15. Ekiz T, Yegen SF, Katar MK, Genc O, Genc S (2018) 25-Hydroxyvitamin D levels and bone mineral density evaluation in patients with cholecystectomy: a case-control study. Arch Osteoporos 13:14. https://doi.org/10.1007/s11657-018-0435-7

    Article  PubMed  Google Scholar 

  16. Dresler CM, Fortner JG, McDermott K, Bajorunas DR (1991) Metabolic consequences of (regional) total pancreatectomy. Ann Surg 214:131–140. https://doi.org/10.1097/00000658-199108000-00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manco M, Ciampalini P, Nobili V (2010) Low levels of 25-hydroxyvitamin D(3) in children with biopsy-proven nonalcoholic fatty liver disease (in eng). Hepatology (Baltim Md) 51:2229. https://doi.org/10.1002/hep.23724

    Article  Google Scholar 

  18. Barchetta I, Angelico F, Del Ben M, Baroni MG, Pozzilli P, Morini S, Cavallo MG (2011) Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes (in eng). BMC Med 9:85. https://doi.org/10.1186/1741-7015-9-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petta S, Camma C, Scazzone C, Tripodo C, Di Marco V, Bono A, Cabibi D, Licata G, Porcasi R, Marchesini G, Craxi A (2010) Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C (in eng). Hepatol (Baltim MD) 51:1158–1167. https://doi.org/10.1002/hep.23489

    Article  CAS  Google Scholar 

  20. Monegal A, Navasa M, Guanabens N, Peris P, Pons F, Martinez de Osaba MJ, Rimola A, Rodes J, Munoz-Gomez J (1997) Osteoporosis and bone mineral metabolism disorders in cirrhotic patients referred for orthotopic liver transplantation (in eng). Calcif Tissue Int 60:148–154. https://doi.org/10.1007/s002239900205

    Article  CAS  PubMed  Google Scholar 

  21. Masuda S, Okano T, Osawa K, Shinjo M, Suematsu T, Kobayashi T (1989) Concentrations of vitamin D-binding protein and vitamin D metabolites in plasma of patients with liver cirrhosis (in eng). J Nutr Sci Vitaminol 35:225–234. https://doi.org/10.3177/jnsv.35.225

    Article  CAS  PubMed  Google Scholar 

  22. Chen CH, Lin CL, Kao CH (2015) Relation between hepatitis C virus exposure and risk of osteoporosis: a nationwide population-based study. Med (Baltim) 94:e2086. https://doi.org/10.1097/MD.0000000000002086

    Article  CAS  Google Scholar 

  23. Malham M, Jorgensen SP, Ott P, Agnholt J, Vilstrup H, Borre M, Dahlerup JF (2011) Vitamin D deficiency in cirrhosis relates to liver dysfunction rather than aetiology. World J Gastroenterol 17:922–925. https://doi.org/10.3748/wjg.v17.i7.922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pappa HM, Bern E, Kamin D, Grand RJ (2008) Vitamin D status in gastrointestinal and liver disease. Curr Opin Gastroenterol 24:176–183. https://doi.org/10.1097/MOG.0b013e3282f4d2f3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen CH, Lin CL, Kao CH (2016) Gastroesophageal reflux disease with proton pump inhibitor use is associated with an increased risk of osteoporosis: a nationwide population-based analysis. Osteoporos Int 27:2117–2126. https://doi.org/10.1007/s00198-016-3510-1

    Article  CAS  PubMed  Google Scholar 

  26. Lee CW, Muo CH, Liang JA, Sung FC, Hsu CY, Kao CH (2016) Increased osteoporosis risk in dermatomyositis or polymyositis independent of the treatments: a population-based cohort study with propensity score. Endocrine 52:86–92. https://doi.org/10.1007/s12020-015-0756-x

    Article  CAS  PubMed  Google Scholar 

  27. Chen SJ, Liao WC, Huang KH, Lin CL, Tsai WC, Kung PT, Chang KH, Kao CH (2015) Chronic obstructive pulmonary disease and allied conditions is a strong independent risk factor for osteoporosis and pathologic fractures: a population-based cohort study. QJM 108:633–640. https://doi.org/10.1093/qjmed/hcv012

    Article  PubMed  Google Scholar 

  28. Lee CW, Liao CH, Lin CL, Liang JA, Sung FC, Kao CH (2015) Increased risk of osteoporosis in patients with depression: a population-based retrospective cohort study. Mayo Clin Proc 90:63–70. https://doi.org/10.1016/j.mayocp.2014.11.009

    Article  PubMed  Google Scholar 

  29. Tsai MS, Lin CL, Tu YK, Lee PH, Kao CH (2015) Risks and predictors of osteoporosis in patients with inflammatory bowel diseases in an Asian population: a nationwide population-based cohort study. Int J Clin Pract 69:235–241. https://doi.org/10.1111/ijcp.12526

    Article  PubMed  Google Scholar 

  30. Lin SY, Hsu WH, Lin CC, Lin CL, Tsai CH, Kao CH (2017) Effect of acute pancreatitis on the risk of developing osteoporosis: a nationwide cohort study. PLoS One 12:e0179358. https://doi.org/10.1371/journal.pone.0179358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khosla S, Oursler MJ, Monroe DG (2012) Estrogen and the skeleton (in eng). Trends Endocrinol Metab TEM 23:576–581. https://doi.org/10.1016/j.tem.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  32. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, Oden A, Zethraeus N, Pfleger B, Khaltaev N (2005) Assessment of fracture risk (in eng). Osteoporos Int 16:581–589. https://doi.org/10.1007/s00198-004-1780-5

    Article  PubMed  Google Scholar 

  33. Inoue D, Watanabe R, Okazaki R (2016) COPD and osteoporosis: links, risks, and treatment challenges (in eng). Int J Chron Obstruct Pulm Dis 11:637–648. https://doi.org/10.2147/copd.S79638

    Article  CAS  Google Scholar 

  34. Kearney DM, Lockey RF (2006) Osteoporosis and asthma (in eng). Ann Aller Asthma Immunol Off Publ Am Coll Allergy Asthm Immunol 96:769–74. https://doi.org/10.1016/s1081-1206(10)61338-5

    Article  Google Scholar 

  35. Cizza G, Primma S, Coyle M, Gourgiotis L, Csako G (2010) Depression and osteoporosis: a research synthesis with meta-analysis (in eng). Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 42:467–82. https://doi.org/10.1055/s-0030-1252020

  36. Swart KM, van Schoor NM, Lips P (2013) Vitamin B12, folic acid, and bone (in eng). Curr Osteoporos Rep 11:213–218. https://doi.org/10.1007/s11914-013-0155-2

    Article  PubMed  Google Scholar 

  37. Lee YH, Song GG (2017) Association between low bone mineral density and fibromyalgia: a meta-analysis (in eng). Clin Rheumatol 36:2573–2579. https://doi.org/10.1007/s10067-017-3683-9

    Article  PubMed  Google Scholar 

  38. Upala S, Yong WC, Sanguankeo A (2017) Bone mineral density is decreased in fibromyalgia syndrome: a systematic review and meta-analysis (in eng). Rheumatol Int 37:617–622. https://doi.org/10.1007/s00296-016-3625-x

    Article  PubMed  Google Scholar 

  39. Sennerby U, Melhus H, Gedeborg R, Byberg L, Garmo H, Ahlbom A, Pedersen NL, Michaelsson K (2009) Cardiovascular diseases and risk of hip fracture (in eng). JAMA 302:1666–1673. https://doi.org/10.1001/jama.2009.1463

    Article  CAS  PubMed  Google Scholar 

  40. Williams GR, Bassett JHD (2018) Thyroid diseases and bone health (in eng). J Endocrinol Invest 41:99–109. https://doi.org/10.1007/s40618-017-0753-4

    Article  CAS  PubMed  Google Scholar 

  41. Stoker GE, Buchowski JM, Stoker ME (2012) Prior cholecystectomy as a predictor of preoperative vitamin D deficiency in adults undergoing spine surgery. Arch Surg 147:577–578. https://doi.org/10.1001/archsurg.2012.463

    Article  PubMed  Google Scholar 

  42. Shabanzadeh DM, Jorgensen T, Linneberg A, Sorensen LT, Skaaby T (2016) Vitamin D and gallstone disease-A population-based study. Endocrine 54:818–825. https://doi.org/10.1007/s12020-016-1113-4

    Article  CAS  PubMed  Google Scholar 

  43. Petzel MQB, Hoffman L (2017) Nutrition implications for long-term survivors of pancreatic cancer surgery [formula: see text] (in eng). Nutr Clin Pract Off Publ Am Soc Parent Enteral Nutr 32:588–598. https://doi.org/10.1177/0884533617722929

    Article  Google Scholar 

  44. Dutta SK, Bustin MP, Russell RM, Costa BS (1982) Deficiency of fat-soluble vitamins in treated patients with pancreatic insufficiency. Ann Intern Med 97:549–552. https://doi.org/10.7326/0003-4819-97-4-549

    Article  CAS  PubMed  Google Scholar 

  45. Ponchon G, Kennan AL, DeLuca HF (1969) "Activation" of vitamin D by the liver (in eng). J Clin Investig 48:2032–2037. https://doi.org/10.1172/jci106168

    Article  CAS  PubMed  Google Scholar 

  46. Tian A, Ma H, Cao X, Zhang R, Wang X, Wu B (2015) Vitamin D improves cognitive function and modulates Th17/T reg cell balance after hepatectomy in mice (in eng). Inflammation 38:500–509. https://doi.org/10.1007/s10753-014-9956-4

    Article  CAS  PubMed  Google Scholar 

  47. Chen CH, Lin CL, Kao CH (2015) Association between chronic hepatitis b virus infection and risk of osteoporosis: a nationwide population-based study (in eng). Med (Baltim) 94:e2276. https://doi.org/10.1097/md.0000000000002276

    Article  CAS  Google Scholar 

  48. Vermeer C, Shearer MJ, Zittermann A, Bolton-Smith C, Szulc P, Hodges S, Walter P, Rambeck W, Stocklin E, Weber P (2004) Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health. Eur J Nutr 43:325–335. https://doi.org/10.1007/s00394-004-0480-4

    Article  CAS  PubMed  Google Scholar 

  49. Weber P (2001) Vitamin K and bone health (in eng). Nutrition 17:880–887

    Article  CAS  Google Scholar 

  50. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton (in eng). Endocr Rev 29:535–559. https://doi.org/10.1210/er.2007-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Assy N, Pruzansky Y, Gaitini D, Shen Orr Z, Hochberg Z, Baruch Y (2008) Growth hormone-stimulated IGF-1 generation in cirrhosis reflects hepatocellular dysfunction (in eng). J Hepatol 49:34–42. https://doi.org/10.1016/j.jhep.2008.02.013

    Article  CAS  PubMed  Google Scholar 

  52. Gallego-Rojo FJ, Gonzalez-Calvin JL, Munoz-Torres M, Mundi JL, Fernandez-Perez R, Rodrigo-Moreno D (1998) Bone mineral density, serum insulin-like growth factor I, and bone turnover markers in viral cirrhosis (in eng). Hepatol (Baltim MD) 28:695–699. https://doi.org/10.1002/hep.510280315

    Article  CAS  Google Scholar 

  53. Cemborain A, Castilla-Cortazar I, Garcia M, Quiroga J, Muguerza B, Picardi A, Santidrian S, Prieto J (1998) Osteopenia in rats with liver cirrhosis: beneficial effects of IGF-I treatment (in eng). J Hepatol 28:122–131. https://doi.org/10.1016/s0168-8278(98)80211-0

    Article  CAS  PubMed  Google Scholar 

  54. Melton LJ 3rd, Achenbach SJ, Gebhart JB, Babalola EO, Atkinson EJ, Bharucha AE (2007) Influence of hysterectomy on long-term fracture risk (in eng). Fertil Steril 88:156–162. https://doi.org/10.1016/j.fertnstert.2006.11.080

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nakamura KM, Haglind EG, Clowes JA, Achenbach SJ, Atkinson EJ, Melton LJ 3rd, Kennel KA (2014) Fracture risk following bariatric surgery: a population-based study (in eng). Osteoporos Int 25:151–158. https://doi.org/10.1007/s00198-013-2463-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank James Waddell of Concise Language Services for the critical reading and revision of our manuscript.

Funding

This work was supported and funded by the Ministry of Science and Technology of Taiwan (MOST 108–2320-B-039–022), Health and Welfare Surcharge of Tobacco Products, China Medical University Hospital Cancer Research Center of Excellence (MOHW108-TDU-B-212–124024), China Medical University Hospital (DMR-108–007, DMR-108–009, DMR-108–044 and CRS-108–001), An-Nan Hospital, China Medical University (ANHRF-108–06 and ANHRF-108–08) and the Chinese Medicine Research Center, China Medical University, under the Higher Education Sprout Project, Ministry of Education (CMRC-CHM-1) in Taiwan. This work was also supported by grants from the Ministry of Health and Welfare, Taiwan (MOHW107-TDU-B-212–123004), China Medical University Hospital, Academia Sinica Stroke Biosignature Project (BM10701010021), MOST Clinical Trial Consortium for Stroke (MOST 107–2321-B-039 -004-), Tseng-Lien Lin Foundation, Taichung, Taiwan, and Katsuzo and Kiyo Aoshima Memorial Funds, Japan.

Author information

Authors and Affiliations

Authors

Contributions

WZC and YLL wrote the manuscript and interpreted the data. YCS, MCL, and CHT collected, assembled, and analyzed the data. HRY and RML offered administrative support and corrected the manuscript. STH designed, conceived the study, and amended the manuscript. All of the authors approved the final manuscript.

Corresponding author

Correspondence to Sheng-Teng Huang.

Ethics declarations

Conflicts of interests

None declared.

Ethics approval and consent to participate

Our study was approved by the Research Ethics Committee of China Medical University and Hospital, Taichung, Taiwan (CMUH104-REC2-115(CR-2)). All of the datasets were de-identified from the NHIRD, so the review board waived the requirement to sign informed consent from patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, WZ., Lin, YL., Su, YC. et al. Post-surgery cholecystectomy, hepatectomy, and pancreatectomy patients increase the risk of osteoporotic vertebral fracture. J Bone Miner Metab 39, 174–185 (2021). https://doi.org/10.1007/s00774-020-01129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01129-7

Keywords

Navigation