Skip to main content

Advertisement

Log in

Vitamin B12, Folic Acid, and Bone

  • Nutrition and Lifestyle in Osteoporosis (S Ferrari, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Vitamin B12 and folic acid deficiency are associated with a higher serum concentration of homocysteine. A high serum homocysteine is a risk factor for fractures. Both vitamins play a role in the remethylation of homocysteine to methionine. The pathophysiology from a high serum homocysteine to fractures is not completely clear, but might involve bone mineral density, bone turnover, bone blood flow, DNA methylation, and/or physical function and fall risk. Genetic variation, especially polymorphisms of the gene encoding for methylenetetrahydrofolate reductase may play a role in homocysteine metabolism and fracture risk. It is uncertain whether supplementation with vitamin B12 and folate can decrease fracture incidence. One double blind clinical trial in post-stroke patients showed that these B vitamins could decrease hip fracture incidence, but the results of further clinical trials should be awaited before a definite conclusion can be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. van Meurs JBJ, Dhonukshe-Rutten RAM, Pluijm SMF, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350(20):2033–41.

    Article  PubMed  Google Scholar 

  2. Dhonukshe-Rutten RAM, Pluijm SMF, de Groot LCPG, Lips P, Smit JH, van Staveren WA. Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. J Bone Miner Res. 2005;20(6):921–9.

    Article  PubMed  CAS  Google Scholar 

  3. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med. 2004;350(20):2042–9.

    Article  PubMed  CAS  Google Scholar 

  4. McLean RR, Jacques PF, Selhub J, Fredman L, Tucker KL, Samelson EJ, et al. Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women. J Clin Endocrinol Metab. 2008;93(6):2206–12.

    Article  PubMed  CAS  Google Scholar 

  5. Morris MS, Jacques PF, Selhub J. Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans. Bone. 2005;37(2):234–42.

    Article  PubMed  CAS  Google Scholar 

  6. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K. Homocysteine as a predictive factor for hip fracture in stroke patients. Bone. 2005;36(4):721–6.

    Article  PubMed  CAS  Google Scholar 

  7. Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA, Gjessing HK, et al. Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch Intern Med. 2006;166(1):88–94.

    Article  PubMed  CAS  Google Scholar 

  8. Perier MA, Gineyts E, Munoz F, Sornay-Rendu E, Delmas PD. Homocysteine and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int. 2007;18(10):1329–36.

    Article  PubMed  CAS  Google Scholar 

  9. Leboff MS, Narweker R, LaCroix A, Wu L, Jackson R, Lee J, et al. Homocysteine levels and risk of hip fracture in postmenopausal women. J Clin Endocrinol Metab. 2009;94(4):1207–13.

    Article  PubMed  CAS  Google Scholar 

  10. Cagnacci A, Bagni B, Zini A, Cannoletta M, Generali M, Volpe A. Relation of folates, vitamin B12 and homocysteine to vertebral bone mineral density change in postmenopausal women. A 5-year longitudinal evaluation. Bone. 2008;42(2):314–20.

    Article  PubMed  CAS  Google Scholar 

  11. Rejnmark L, Vestergaard P, Hermann AP, Brot C, Eiken P, Mosekilde L. Dietary intake of folate, but not vitamin B2 or B12, is associated with increased bone mineral density 5 years after the menopause: results from a 10-year follow-up study in early postmenopausal women. Calcif Tissue Int. 2008;82(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  12. van Wijngaarden JP, Doets EL, Szczecinska A, Souverein OW, Duffy ME, Dullemeijer C, et al. Vitamin B12, folate, homocysteine, and bone health in adults and elderly people: a systematic review with meta-analyses. J Nutr Metab. 2013;2013:486186.

    PubMed  Google Scholar 

  13. • Yang J, Hu X, Zhang Q, Cao H, Wang J, Liu B. Homocysteine level and risk of fracture: a meta-analysis and systematic review. Bone. 2012;51(3):376–82. First systematic overview of homocysteine and fracture risk.

    Article  PubMed  CAS  Google Scholar 

  14. Harris EDJ, Sjoerdsma A. Collagen profile in various clinical conditions. Lancet. 1966;2(7466):707–11.

    Article  PubMed  Google Scholar 

  15. Kang AH, Trelstad RL. A collagen defect in homocystinuria. J Clin Invest. 1973;52(10):2571–8.

    Article  PubMed  CAS  Google Scholar 

  16. Lubec B, Fang-Kircher S, Lubec T, Blom HJ, Boers GH. Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta. 1996;1315(3):159–62.

    Article  PubMed  Google Scholar 

  17. Saito M, Fujii K, Marumo K. Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int. 2006;79(3):160–8.

    Article  PubMed  CAS  Google Scholar 

  18. Koh JM, Lee YS, Kim YS, Kim DJ, Kim HH, Park JY, et al. Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res. 2006;21(7):1003–11.

    Article  PubMed  CAS  Google Scholar 

  19. Vaes BLT, Lute C, Blom HJ, Bravenboer N, de Vries TJ, Everts V, et al. Vitamin B(12) deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid. Calcif Tissue Int. 2009;84(5):413–22.

    Google Scholar 

  20. Gerdhem P, Ivaska KK, Isaksson A, Pettersson K, Vaananen HK, Obrant KJ, et al. Associations between homocysteine, bone turnover, BMD, mortality, and fracture risk in elderly women. J Bone Miner Res. 2007;22(1):127–34.

    Article  PubMed  CAS  Google Scholar 

  21. Nilsson K, Gustafson L, Isaksson A, Hultberg B. Plasma homocysteine and markers of bone metabolism in psychogeriatric patients. Scand J Clin Lab Invest. 2005;65(8):671–80.

    Article  PubMed  CAS  Google Scholar 

  22. Holstein JH, Herrmann M, Splett C, Herrmann W, Garcia P, Histing T, et al. Low serum folate and vitamin B-6 are associated with an altered cancellous bone structure in humans. Am J Clin Nutr. 2009;90(5):1440–5.

    Article  PubMed  CAS  Google Scholar 

  23. Tyagi N, Vacek TP, Fleming JT, Vacek JC, Tyagi SC. Hyperhomocysteinemia decreases bone blood flow. Vasc Health Risk Manag. 2011;7:31–5.

    PubMed  Google Scholar 

  24. Claes L, Schmalenbach J, Herrmann M, Olku I, Garcia P, Histing T, et al. Hyperhomocysteinemia is associated with impaired fracture healing in mice. Calcif Tissue Int. 2009;85(1):17–21.

    Article  PubMed  CAS  Google Scholar 

  25. Herrmann M, Tami A, Wildemann B, Wolny M, Wagner A, Schorr H, et al. Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone. Bone. 2009;44(3):467–75.

    Google Scholar 

  26. Holstein JH, Herrmann M, Splett C, Herrmann W, Garcia P, Histing T, et al. High bone concentrations of homocysteine are associated with altered bone morphology in humans. Br J Nutr. 2011;106(3):378–82.

    Article  PubMed  CAS  Google Scholar 

  27. Enneman AW, van der Velde N, de Jonge R, Heil SG, Stolk L, Hofman A, et al. The association between plasma homocysteine levels, methylation capacity and incident osteoporotic fractures. Bone. 2012;50(6):1401–5.

    Article  PubMed  CAS  Google Scholar 

  28. Kado DM, Bucur A, Selhub J, Rowe JW, Seeman T. Homocysteine levels and decline in physical function: MacArthur Studies of Successful Aging. Am J Med. 2002;113(7):537–42.

    Article  PubMed  CAS  Google Scholar 

  29. Rolita L, Holtzer R, Wang C, Lipton R, Derby C, Verghese J. Homocysteine and mobility in older Adults. J Am Geriatr Soc. 2010;58:545–50.

    Article  PubMed  Google Scholar 

  30. • van Schoor NM, Swart KMA, Pluijm SMF, Visser M, Simsek S, Smulders Y, et al. Cross-sectional and longitudinal association between homocysteine, vitamin B12 and physical performance in older persons. Eur J Clin Nutr. 2012;66(2):174–81. This study shows possible links between high homocysteine and physical function.

    Article  PubMed  Google Scholar 

  31. Kuo HK, Liao KC, Leveille SG, Bean JF, Yen CJ, Chen JH, et al. Relationship of homocysteine levels to quadriceps strength, gait speed, and late-life disability in older adults. J Gerontol A Biol Sci Med Sci. 2007;62(4):434–9.

    Article  PubMed  Google Scholar 

  32. Swart KMA, van Schoor NM, Heymans MW, Schaap LA, den Heijer M, Lips P. Elevated homocysteine levels are associated with low muscle strength and functional limitations in older persons. J Nutr Health Aging. 2013; in press.

  33. Shahar D, Levi M, Kurtz I, Shany S, Zvili I, Mualleme E, et al. Nutritional status in relation to balance and falls in the elderly: a preliminary look at serum folate. Ann Nutr Metab. 2009;54(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  34. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K. Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA. 2005;293(9):1082–8.

    Article  PubMed  CAS  Google Scholar 

  35. • Wang H, Liu C. Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: an updated meta-analysis. Osteoporos Int. 2012;23(11):2625–34. Meta-analysis of MTHFR polymorphisms, BMD, and fracture risk.

    Article  PubMed  CAS  Google Scholar 

  36. Li D, Wu J. Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis. J Biomed Res. 2010;24(6):417–23.

    Article  PubMed  Google Scholar 

  37. Riancho JA, Valero C, Zarrabeitia MT. MTHFR polymorphism and bone mineral density: meta-analysis of published studies. Calcif Tissue Int. 2006;79(5):289–93.

    Article  PubMed  CAS  Google Scholar 

  38. McLean RR, Karasik D, Selhub J, Tucker KL, Ordovas JM, Russo GT, et al. Association of a common polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene with bone phenotypes depends on plasma folate status. J Bone Miner Res. 2004;19(3):410–8.

    Article  PubMed  CAS  Google Scholar 

  39. Abrahamsen B, Madsen JS, Tofteng CL, Stilgren L, Bladbjerg EM, Kristensen SR, et al. Are effects of MTHFR (C677T) genotype on BMD confined to women with low folate and riboflavin intake? Analysis of food records from the Danish osteoporosis prevention study. Bone. 2005;36(3):577–83.

    Article  PubMed  CAS  Google Scholar 

  40. Abrahamsen B, Jorgensen HL, Nielsen TL, Andersen M, Haug E, Schwarz P, et al. MTHFR c.677C > T polymorphism as an independent predictor of peak bone mass in Danish men—results from the Odense Androgen Study. Bone. 2006;38(2):215–9.

    Article  PubMed  CAS  Google Scholar 

  41. Miyao M, Morita H, Hosoi T, Kurihara H, Inoue S, Hoshino S, et al. Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women. Calcif Tissue Int. 2000;66(3):190–4.

    Article  PubMed  CAS  Google Scholar 

  42. Sawka AM, Ray JG, Yi Q, Josse RG, Lonn E. Randomized clinical trial of homocysteine level lowering therapy and fractures. Arch Intern Med. 2007;167(19):2136–9.

    Article  PubMed  CAS  Google Scholar 

  43. Green TJ, McMahon JA, Skeaff CM, Williams SM, Whiting SJ. Lowering homocysteine with B vitamins has no effect on biomarkers of bone turnover in older persons: a 2-y randomized controlled trial. Am J Clin Nutr. 2007;85(2):460–4.

    PubMed  CAS  Google Scholar 

  44. Herrmann M, Stanger O, Paulweber B, Hufnagl C, Herrmann W. Folate supplementation does not affect biochemical markers of bone turnover. Clin Lab. 2006;52(3–4):131–6.

    PubMed  CAS  Google Scholar 

  45. Herrmann M, Umanskaya N, Traber L, Schmidt-Gayk H, Menke W, Lanzer G, et al. The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial. Clin Chem Lab Med. 2007;45(12):1785–92.

    PubMed  CAS  Google Scholar 

  46. Keser I, Ilich JZ, Vrkic N, Giljevic Z, Colic Baric I. Folic acid and vitamin B(12) supplementation lowers plasma homocysteine but has no effect on serum bone turnover markers in elderly women: a randomized, double-blind, placebo-controlled trial. Nutr Res. 2013;33(3):211–9.

    Article  PubMed  CAS  Google Scholar 

  47. Shahab-Ferdows S. naya-Loyola MA, Vergara-Castaneda H, Rosado JL, Keyes WR, Newman JW, et al. Vitamin B-12 supplementation of rural Mexican women changes biochemical vitamin B-12 status indicators but does not affect hematology or a bone turnover marker. J Nutr. 2012;142(10):1881–7.

    Article  PubMed  CAS  Google Scholar 

  48. Herrmann W, Kirsch SH, Kruse V, Eckert R, Graber S, Geisel J, et al. One year B and D vitamins supplementation improves metabolic bone markers. Clin Chem Lab Med. 2013;51(3):639–47.

    PubMed  CAS  Google Scholar 

  49. • van Wijngaarden JP, Dhonukshe-Rutten RAM, van Schoor NM, van der Velde N, Swart KMA, Enneman AW, et al. Rationale and design of the B-PROOF study, a randomized controlled trial on the effect of supplemental intake of vitamin B12 and folic acid on fracture incidence. BMC Geriatr. 2011;11:80. An ongoing randomized controlled trial of which the results are in demand.

    Article  PubMed  Google Scholar 

  50. Health Council of the Netherlands. Towards an optimal use of folic acid. The Hague: Health Council of the Netherlands, 2008; publication no. 2008/02E. (www.gezondheidsraad.nl).

Download references

Compliance with Ethics Guidelines

Conflict of Interest

None.

Human and Animal Rights and Informed Consent

The referenced studies by the authors (1, 2, 30, 32, 49) were done in human subjects with appropriate informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Lips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swart, K.M.A., van Schoor, N.M. & Lips, P. Vitamin B12, Folic Acid, and Bone. Curr Osteoporos Rep 11, 213–218 (2013). https://doi.org/10.1007/s11914-013-0155-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0155-2

Keywords

Navigation