Skip to main content

Advertisement

Log in

Gender- and body-site-specific factors associated with bone mineral density in a non-institutionalized Korean population aged ≥50 years

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the gender- and body-site-specific factors associated with bone mineral density (BMD) at the femoral neck and lumbar spine in a non-institutionalized population aged ≥50 years characterized by low average calcium intake. The comprehensive data utilized were from the 2010 Fifth Korea National Health and Nutrition Examination Survey, which included health behavior questionnaire, blood and urine tests, dual-energy X-ray absorptiometry, and nutrition intake. The factors associated with BMD at the femoral neck and lumbar spine in both genders were analyzed separately using multiple regression analysis with a stepwise selection. The average daily calcium intake in the male subjects was 565.8 mg and in the female subjects was 443.7 mg. In multiple regression analysis, age, body mass index (BMI), alkaline phosphatase (ALP), lead, daily calcium intake, and cadmium were the significant factors associated with femoral neck BMD in male subjects. BMI, creatinine (Cr), total body fat percentile, lead, ALP, and hypertension were found to be the significant factors associated with lumbar spine BMD in male subjects. In the female subjects, the significant factors associated with femoral neck BMD were age, BMI, ALP, house income, and total body fat percentile, while menopause, Cr, mercury, house income, BMI, and ALP were found to be the significant factors associated with lumbar spine BMD. In conclusion, different factors were associated with BMD depending on gender and the body site tested (femoral neck or lumbar spine). These gender- and body-site-specific factors need to be considered for the prevention and management of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leboime A, Confavreux CB, Mehsen N, Paccou J, David C, Roux C (2010) Osteoporosis and mortality. Joint Bone Spine 77:S107–S112

    Article  PubMed  Google Scholar 

  2. Johnell O, Kanis JA, Odén A, Sernbo I, Redlund-Johnell I et al (2004) Mortality after osteoporotic fractures. Osteoporos Int 15:38–42

    Article  CAS  PubMed  Google Scholar 

  3. Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I et al (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11:669–674

    Article  CAS  PubMed  Google Scholar 

  4. Kim SH, Kim YM, Cho MA, Rhee Y, Hur KY et al (2008) Echogenic carotid artery plaques are associated with vertebral fractures in postmenopausal women with low bone mass. Calcif Tissue Int 82:411–417

    Article  CAS  PubMed  Google Scholar 

  5. Fisher A, Srikusalanukul W, Davis M, Smith P (2013) Cardiovascular diseases in older patients with osteoporotic hip fracture: prevalence, disturbances in mineral and bone metabolism, and bidirectional links. Clin Interv Aging 8:239–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nakano M, Kawaguchi Y, Kimura T, Hirano N (2014) Transpedicular vertebroplasty after intravertebral cavity formation versus conservative treatment for osteoporoticburst fractures. Spine J 14:39-48

  7. Ee GW, Lei J, Guo CM, Yeo W, Tan SB et al (2013) Comparison of clinical outcomes and radiographic measurements in four different treatment modalities for osteoporotic compression fractures: retrospective analysis. J Spinal Disord Tech (epub ahead of print) doi:10.1097/BSD.0b013e31828f940c

  8. Fensky F, Nüchtern JV, Kolb JP, Huber S, Rupprecht M et al (2013) Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures—a biomechanical cadaver study. Injury 44:802–807

    Article  CAS  PubMed  Google Scholar 

  9. Eschen J, Kring S, Brix M, Ban I, Troelsen A (2013) Outcome of an uncemented hydroxyapatite coated hemiarthroplasty for displaced femoral neck fractures: a clinical and radiographic 2-year follow-up study. Hip Int 22:574–579

    Article  Google Scholar 

  10. Yamada M, Ito M, Hayashi K, Nakamura T (1993) Calcaneus as a site for assessment of bone mineral density: evaluation in cadavers and healthy volunteers. AJR Am J Roentgenol 161:621–627

    Article  CAS  PubMed  Google Scholar 

  11. Torgerson DJ, Campbell MK, Thomas RE, Reid DM (1996) Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res 11:293–297

    Article  CAS  PubMed  Google Scholar 

  12. Huang C, Ross PD, Yates AJ, Walker RE, Imose K et al (1998) Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 63:380–384

    Article  CAS  PubMed  Google Scholar 

  13. Pulkkinen P, Partanen J, Jalovaara P, Jamsa T (2004) Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int 15:274–280

    Article  PubMed  Google Scholar 

  14. Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M (2003) Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res 18:1547–1553

    Article  PubMed  Google Scholar 

  15. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  16. McClung MR, Balske A, Burgio DE, Wenderoth D, Recker RR (2013) Treatment of postmenopausal osteoporosis with delayed-release risedronate 35 mg weekly for 2 years. Osteoporos Int 24:301–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Weycker D, Lamerato L, Schooley S, Macarios D, Siu Woodworth T et al (2013) Adherence with bisphosphonate therapy and change in bone mineral density among women with osteoporosis or osteopenia in clinical practice. Osteoporos Int 24:1483–1489

    Article  CAS  PubMed  Google Scholar 

  18. Jacques RM, Boonen S, Cosman F, Reid IR, Bauer DC et al (2013) Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-pivotal fracture trial (PFT). J Bone Miner Res 27:1627–1634

    Article  Google Scholar 

  19. Grey A, Bolland M, Wong S, Horne A, Gamble G, Reid IR (2012) Low-dose zoledronate in osteopenic postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab 97:286–292

    Article  CAS  PubMed  Google Scholar 

  20. Douchi T, Matsuo T, Uto H, Kuwahata T, Oki T, Nagata Y (2003) Lean body mass and bone mineral density in physically exercising postmenopausal women. Maturitas 45:185–190

    Article  PubMed  Google Scholar 

  21. Garnero P, Munoz F, Sornay-Rendu E, Delmas PD (2007) Associations of vitamin D status with bone mineral density, bone turnover, bone loss and fracture risk in healthy postmenopausal women. The OFELY study. Bone 40:716–722

    Article  CAS  PubMed  Google Scholar 

  22. Cauley JA, Fullman RL, Stone KL, Zmuda JM, Bauer DC et al (2005) Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 16:1525–1537

    Article  PubMed  Google Scholar 

  23. Jian WX, Long JR, Li MX, Liu XH, Deng HW (2005) Genetic determination of variation and covariation of bone mineral density at the hip and spine in a Chinese population. J Bone Miner Metab 23:181–185

    Article  PubMed  Google Scholar 

  24. Izumotani K, Hagiwara S, Izumotani T, Miki T, Morii H, Nishizawa Y (2003) Risk factors for osteoporosis in men. J Bone Miner Metab 21:86–90

    Article  PubMed  Google Scholar 

  25. Baheiraei A, Pocock NA, Eisman JA, Nguyen ND, Nguyen TV (2005) Bone mineral density, body mass index and cigarette smoking among Iranian women: implications for prevention. BMC Musculoskelet Disord 6:34

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bakker I, Twisk JW, Van Mechelen W, Kemper HC (2003) Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women. J Clin Endocrinol Metab 88:2607–2613

    Article  CAS  PubMed  Google Scholar 

  27. Taaffe DR, Cauley JA, Danielson M, Nevitt MC, Lang TF et al (2001) Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the health, aging, and body composition study. J Bone Miner Res 16:1343–1352

    Article  CAS  PubMed  Google Scholar 

  28. Nakaoka D, Sugimoto T, Kaji H, Kanzawa M, Yano S et al (2001) Determinants of bone mineral density and spinal fracture risk in postmenopausal Japanese women. Osteoporos Int 12:548–554

    Article  CAS  PubMed  Google Scholar 

  29. Nelson RE, Nebeker JR, Sauer BC, LaFleur J (2012) Factors associated with screening or treatment initiation among male United States veterans at risk for osteoporosis fracture. Bone 50:983–988

    Article  PubMed  Google Scholar 

  30. Hopper JL, Seeman E (1994) The bone density of female twins discordant for tobacco use. N Engl J Med 330:387–392

    Article  CAS  PubMed  Google Scholar 

  31. Cassidenti DL, Pike MC, Vijod AG, Stanczyk FZ, Lobo RA (1992) A reevaluation of estrogen status in postmenopausal women who smoke. Am J Obstet Gynecol 166:1444–1448

    Article  CAS  PubMed  Google Scholar 

  32. Gutin B, Kasper MJ (1992) Can vigorous exercise play a role in osteoporosis prevention? A review. Osteoporos Int 2:55–69

    Article  CAS  PubMed  Google Scholar 

  33. Reid IR, Ames R, Evans MC, Sharpe S, Gamble G et al (1992) Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J Clin Endocrinol Metab 75:45–51

    CAS  PubMed  Google Scholar 

  34. Heaney RP (1993) Thinking straight about calcium. N Engl J Med 328:503–505

    Article  CAS  PubMed  Google Scholar 

  35. Felson DT, Zhang Y, Hannan MT, Kannel WB, Kiel DP (1995) Alcohol intake and bone mineral density in elderly men and women. The Framingham study. Am J Epidemiol 142:485–492

    CAS  PubMed  Google Scholar 

  36. Chun MY (2012) Validity and reliability of Korean version of international physical activity questionnaire short form in the elderly. Korean J Fam Med 33:144–151

    Article  PubMed Central  PubMed  Google Scholar 

  37. National Rural Resources Development Institute. Rural Development Administration (2006) Food composition table, 7th edn. National Rural Resources Development Institute, Suwon

  38. Kim ES, Ko YS, Kim J, Matsuda-Inoguchi N, Nakatsuka H, Watanabe T, Shimbo S, Ikeda M (2003) Food composition table-based estimation of energy and major nutrient intake in comparison with chemical analysis: a validation study in Korea. Tohoku J Exp Med 200:7–15

    Article  PubMed  Google Scholar 

  39. Leung KS, Fung KP, Sher AH, Li CK, Lee KM (1993) Plasma bone-specific alkaline phosphatase as an indicator of osteoblastic activity. J Bone Jt Surg Br 75:288–292

    CAS  Google Scholar 

  40. Hulth AG, Nilsson BE, Westlin NE, Wiklund PE (1979) Alkaline phosphatase in women with osteoporosis. Acta Med Scand 206:201–203

    Article  CAS  PubMed  Google Scholar 

  41. Iki M, Akiba T, Matsumoto T, Nishino H, Kagamimori S et al (2004) Reference database of biochemical markers of bone turnover for the Japanese female population. Japanese Population-based Osteoporosis (JPOS) study. Osteoporos Int 15:981–991

    Article  CAS  PubMed  Google Scholar 

  42. Allali F, Rostom S, Bennani L, Abouqal R, Hajjaj-Hassouni N (2010) Educational level and osteoporosis risk in postmenopausal Moroccan women: a classification tree analysis. Clin Rheumatol 29:1269–1275

    Article  PubMed  Google Scholar 

  43. Wardle J, Haase AM, Steptoe A, Nillapun M, Jonwutiwes K, Bellisle F (2004) Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med 27:107–116

    Article  PubMed  Google Scholar 

  44. Prättälä R, Paalanen L, Grinberga D, Helasoja V, Kasmel A, Petkeviciene J (2007) Gender differences in the consumption of meat, fruit and vegetables are similar in Finland and the Baltic countries. Eur J Public Health 17:520–525

    Article  PubMed  Google Scholar 

  45. Howard TE (1989) Clinical chemistry. Wiley, New York

    Google Scholar 

  46. Pounds JG, Long GJ, Rosen JF (1991) Cellular and molecular toxicity of lead in bone. Environ Health Perspect 91:17–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Sun Y, Sun D, Zhou Z, Zhu G, Lei L, Zhang H, Chang X, Jin T (2008) Estimation of benchmark dose for bone damage and renal dysfunction in a Chinese male population occupationally exposed to lead. Ann Occup Hyg 52:527–533

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Wang K, Wang Z, Gan C, He P, Liang Y, Jin T, Zhu G (2014) Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population. Bone 63:76–80

    Article  CAS  PubMed  Google Scholar 

  49. Cho GJ, Park HT, Shin JH, Hur JY, Kim SH, Lee KW, Kim T (2012) The relationship between blood mercury level and osteoporosis in postmenopausal women. Menopause 19:576–581

    Article  PubMed  Google Scholar 

  50. Khadilkar A, Kadam N, Chiplonkar S, Fischer PR, Khadilkar V (2012) School-based calcium-vitamin D with micronutrient supplementation enhances bone mass in underprivileged Indian premenarchal girls. Bone 51:1–7

    Article  CAS  PubMed  Google Scholar 

  51. Devold HM, Furu K, Skurtveit S, Tverdal A, Falch JA, Sogaard AJ (2012) Influence of socioeconomic factors on the adherence of alendronate treatment in incident users in Norway. Pharmacoepidemiol Drug Saf 21:297–304

    Article  PubMed  Google Scholar 

  52. Navarro MC, Sosa M, Saavedra P, Lainez P, Marrero M, Torres M, Medina CD (2009) Poverty is a risk factor for osteoporotic fractures. Osteoporos Int 20:393–398

    Article  CAS  PubMed  Google Scholar 

  53. Heikkinen R, Vihriala E, Vainionpaa A, Korpelainen R, Jamsa T (2007) Acceleration slope of exercise-induced impacts is a determinant of changes in bone density. J Biomech 40:2967–2974

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mi Sun Ryu, BS, and Hyun Mi Kim, BS, for their technical support. This research was supported by the Ministry of Trade, Industry and Energy of Korea (Grant No. 10045220). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Seok Park.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.M., Kwon, SS., Chung, C.Y. et al. Gender- and body-site-specific factors associated with bone mineral density in a non-institutionalized Korean population aged ≥50 years. J Bone Miner Metab 33, 401–409 (2015). https://doi.org/10.1007/s00774-014-0600-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0600-z

Keywords

Navigation