Skip to main content
Log in

Gender comparison of factors associated with age-related differences in bone mineral density

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

We found that age-related decline in bone mineral density (BMD) is more pronounced in women than in men, that lean mass was the most important determinant of BMD in all age groups in both sexes, and that different factors may be important for bone health of men and women and at different ages.

Introduction

Multiple factors may affect bone mineral density (BMD). Our objective was to identify the correlates of age-related differences in BMD among men and women.

Methods

We performed a cross-sectional study involving 490 men and 517 women between the age of 29 and 87 years that were free of medication and diseases known to affect bone metabolism. BMD was measured at various sites using dual-energy X-ray absorptiometry, and factors possibly associated with skeletal status were assessed by direct measurements and a detailed questionnaire.

Results

BMD was lower with advancing age at all BMD measurement sites, the greatest difference being for the femoral neck where in women BMD was 37.5 % lower in the oldest compared to that in the youngest age group, but the difference was 22.9 % in men. Levels of free estradiol were sharply lower after age of 40 among women; free testosterone declined gradually with age among men but was not independently associated with BMD. Factors including lean mass, physical activity, ionized calcium, C-terminal telopeptide (CTX), serum sodium, free estradiol, and smoking explained a large fraction of difference in BMD in different age groups but to a varying degree in men and women. Lean mass was the strongest independent factor associated with BMD at all sites among men and women.

Conclusions

Age-related decline in BMD is more pronounced in women than in men, but determinants of BMD are multiple and interrelated. Our study indicates that different factors may be important for bone health of men and women and at different ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, Melton LJ, Cummings SR, Kanis JA, Epidemiology ICWGoF (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22:1277–1288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773

    Article  PubMed  CAS  Google Scholar 

  3. Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11:669–674

    Article  PubMed  CAS  Google Scholar 

  4. Nguyen TV, Center JR, Eisman JA (2000) Osteoporosis in elderly men and women: effects of dietary calcium, physical activity, and body mass index. J Bone Miner Res 15:322–331

    Article  Google Scholar 

  5. Cooper C, Eriksson JG, Forsen T, Osmond C, Tuomilehto J, Barker DJ (2001) Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 12:623–629

    Article  PubMed  CAS  Google Scholar 

  6. Khosla S (2013) Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 68:1226–1235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  8. Mazess RB, Barden HS, Drinka PJ, Bauwens SF, Orwoll ES, Bell NH (1990) Influence of age and body weight on spine and femur bone mineral density in U.S. white men. J Bone Miner Res 5:645–652

    Article  PubMed  CAS  Google Scholar 

  9. Christiansen C (1994) Postmenopausal bone loss and the risk of osteoporosis. Osteoporos Int 4(Suppl 1):47–51

    Article  PubMed  Google Scholar 

  10. Melton LJ 3rd, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (2000) Determinants of bone loss from the femoral neck in women of different ages. J Bone Miner Res 15:24–31

    Article  PubMed  Google Scholar 

  11. LeBlanc ES, Nielson CM, Marshall LM, Lapidus JA, Barrett-Connor E, Ensrud KE, Hoffman AR, Laughlin G, Ohlsson C, Orwoll ES, Osteoporotic Fractures in Men Study G (2009) The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab 94:3337–3346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Khosla S, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    PubMed  CAS  Google Scholar 

  13. Mosekilde L, Vestergaard P, Rejnmark L (2013) The pathogenesis, treatment and prevention of osteoporosis in men. Drugs 73:15–29

    Article  PubMed  CAS  Google Scholar 

  14. Legrand E, Hedde C, Gallois Y, Degasne I, Boux de Casson F, Mathieu E, Basle MF, Chappard D, Audran M (2001) Osteoporosis in men: a potential role for the sex hormone binding globulin. Bone 29:90–95

    Article  PubMed  CAS  Google Scholar 

  15. Lormeau C, Soudan B, d’Herbomez M, Pigny P, Duquesnoy B, Cortet B (2004) Sex hormone-binding globulin, estradiol, and bone turnover markers in male osteoporosis. Bone 34:933–939

    Article  PubMed  CAS  Google Scholar 

  16. Martinez Diaz-Guerra G, Hawkins F, Rapado A, Ruiz Diaz MA, Diaz-Curiel M (2001) Hormonal and anthropometric predictors of bone mass in healthy elderly men: major effect of sex hormone binding globulin, parathyroid hormone and body weight. Osteoporos Int 12:178–184

    Article  PubMed  CAS  Google Scholar 

  17. Steingrimsdottir L, Gunnarsson O, Indridason OS, Franzson L, Sigurdsson G (2005) Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 294:2336–2341

    Article  PubMed  CAS  Google Scholar 

  18. Sodergard R, Backstrom T, Shanbhag V, Carstensen H (1982) Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem 16:801–810

    Article  PubMed  CAS  Google Scholar 

  19. Wetmore JB, Palsson R, Belmont JM, Sigurdsson G, Franzson L, Indridason OS (2010) Discrepancies between creatinine- and cystatin C-based equations: implications for identification of chronic kidney disease in the general population. Scand J Urol Nephrol 44:242–250

    Article  PubMed  CAS  Google Scholar 

  20. Siggeirsdottir K, Aspelund T, Jonsson BY, Mogensen B, Gudmundsson EF, Gudnason V, Sigurdsson G (2014) Epidemiology of fractures in Iceland and secular trends in major osteoporotic fractures 1989-2008. Osteoporos Int 25:211–219

    Article  PubMed  CAS  Google Scholar 

  21. Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13:105–112

    Article  PubMed  CAS  Google Scholar 

  22. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC (1997) Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int 7:564–569

    Article  PubMed  CAS  Google Scholar 

  23. Szulc P, Marchand F, Duboeuf F, Delmas PD (2000) Cross-sectional assessment of age-related bone loss in men: the MINOS study. Bone 26:123–129

    Article  PubMed  CAS  Google Scholar 

  24. Sigurdsson G, Halldorsson BV, Styrkarsdottir U, Kristjansson K, Stefansson K (2008) Impact of genetics on low bone mass in adults. J Bone Miner Res 23:1584–1590

    Article  PubMed  Google Scholar 

  25. Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947

    Article  PubMed  CAS  Google Scholar 

  26. Lopes RF, Ferreira SA, Coeli CM, Farias ML (2009) Low body mass index and declining sex steroids explain most age-related bone loss in Brazilian men. Osteoporos Int 20:1175–1182

    Article  PubMed  CAS  Google Scholar 

  27. Garnero P, Sornay-Rendu E, Delmas PD (2000) Low serum IGF-1 and occurrence of osteoporotic fractures in postmenopausal women. Lancet 355:898–899

    Article  PubMed  CAS  Google Scholar 

  28. Szulc P, Joly-Pharaboz MO, Marchand F, Delmas PD (2004) Insulin-like growth factor I is a determinant of hip bone mineral density in men less than 60 years of age: MINOS study. Calcif Tissue Int 74:322–329

  29. Ayus JC, Negri AL, Kalantar-Zadeh K, Moritz ML (2012) Is chronic hyponatremia a novel risk factor for hip fracture in the elderly? Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc 27:3725–3731

    Google Scholar 

  30. Hoorn EJ, Rivadeneira F, van Meurs JB, Ziere G, Stricker BH, Hofman A, Pols HA, Zietse R, Uitterlinden AG, Zillikens MC (2011) Mild hyponatremia as a risk factor for fractures: the Rotterdam Study. J Bone Miner Res Off J Am Soc Bone Miner Res 26:1822–1828

    Article  CAS  Google Scholar 

  31. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337:670–676

  32. Gudmundsdottir SL, Oskarsdottir D, Indridason OS, Franzson L, Sigurdsson G (2010) Risk factors for bone loss in the hip of 75-year-old women: a 4-year follow-up study. Maturitas 67:256–261

    Article  PubMed  Google Scholar 

  33. Uusi-Rasi K, Sievanen H, Pasanen M, Oja P, Vuori I (2001) Maintenance of body weight, physical activity and calcium intake helps preserve bone mass in elderly women. Osteoporos Int 12:373–379

    Article  PubMed  CAS  Google Scholar 

  34. Emaus N, Wilsgaard T, Ahmed LA (2014) Impacts of body mass index, physical activity, and smoking on femoral bone loss. The Tromso study. J Bone Miner Res

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olafur S. Indridason.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

ESM 2

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Runolfsdottir, H.L., Sigurdsson, G., Franzson, L. et al. Gender comparison of factors associated with age-related differences in bone mineral density. Arch Osteoporos 10, 23 (2015). https://doi.org/10.1007/s11657-015-0214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-015-0214-7

Keywords

Navigation