Skip to main content
Log in

Rolle der Molekularpathologie beim Schilddrüsenkarzinom

Tumordiagnostik, Zytologie und zielgerichtete Therapie

The role of molecular pathology in thyroid cancer

Tumor diagnostics, cytology and targeted therapy

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Die Diagnose und Differenzialdiagnose von Tumoren der Schilddrüse stellt nach wie vor eine Herausforderung für den Pathologen dar. Molekularpathologische Erkenntnisse erlauben zunehmend eine bessere Charakterisierung der unterschiedlichen Tumorentitäten.

Fragestellung

Die Rolle der Molekularpathologie bei der präoperativen (Feinnadelbiopsien) und postoperativen Diagnostik von Schilddrüsentumoren sowie als Entscheidungshilfe für zielgerichtete Therapien beim fortgeschrittenen Schilddrüsenkarzinom soll in diesem Beitrag diskutiert werden.

Material und Methode

Es wurden relevante wissenschaftliche Arbeiten und Übersichtsartikel zusammengefasst und ausgewertet.

Ergebnisse

Molekularpathologische Erkenntnisse bestätigen die traditionelle morphologische Unterteilung der Schilddrüsenkarzinome in 4 Hauptentitäten (papilläres, follikuläres, medulläres und anaplastisches Karzinom) mit erstaunlich geringer Überschneidung. Einige genetische Veränderungen sind für bestimmte Tumoren spezifisch und daher diagnostisch beweisend. Die biologisch absolut relevante Entität des gering differenzierten Schilddrüsenkarzinoms konnte bislang allerdings noch nicht ausreichend genetisch definiert werden. Molekularpathologische Untersuchungen werden auch erfolgreich in der Feinnadelzytologie angewendet.

Heute verfügbare zielgerichtete Therapien basieren auf genetischen Alterationen, die in der Regel vom Pathologen nachgewiesen werden. Mit hoher Wahrscheinlichkeit wird die Molekularpathologie auch bei der Entscheidung über die Therapie von fortgeschrittenen und aggressiven Schilddrüsenkarzinomen zukünftig Bedeutung erlangen.

Schlussfolgerungen

Der Nachweis von genetischen Veränderungen ist heute bei der prä- und postoperativen Diagnostik von Schilddrüsentumoren insbesondere für das papilläre Schilddrüsenkarzinom als Standard anzusehen.

Abstract

Background

The diagnostics and differential diagnosis of tumors of the thyroid glands are still challenging. Molecular genetic insights are increasingly allowing a better definition of the various tumor entities.

Objectives

The role of molecular pathology in preoperative (e.g. fine needle biopsies) and postoperative diagnostics of thyroid tumors as well as an aid to decision making in targeted therapies of advanced stage thyroid cancer.

Material and methods

A comprehensive summary based on relevant scientific and review articles in the literature.

Results

The traditional differentiation of thyroid carcinomas into four major groups (i.e. papillary, follicular, medullary and anaplastic carcinomas) based on morphology and clinical features is strongly supported by distinct genetic alterations in these four groups and with very little overlap. However, the morphologically and biologically relevant entity of poorly differentiated thyroid carcinoma still lacks a genetic definition. Molecular testing has been successfully included in the evaluation of fine needle thyroid biopsies. Currently available targeted therapies are based on genetic alterations, which are usually demonstrated by pathologists. In the future molecular pathology will most likely become an important tool in the decision-making process of targeted therapies in advanced and aggressive thyroid carcinomas.

Conclusion

Molecular pathology has become an integral part of the diagnostic routine in the preoperative and postoperative evaluation, particularly of papillary thyroid carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Adeniran AJ, Zhu Z, Gandhi M et al (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30:216–222

    Article  PubMed  Google Scholar 

  2. Alonso-Gordoa T, Díez JJ, Durán M, Grande E (2015) Advances in thyroid cancer treatment: latest evidence and clinical potential. Ther Adv Med Oncol 7:22–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Arora N, Scognamiglio T, Zhu B, Fahey TJ III (2008) Do benign thyroid nodules have malignant potential? An evidence-based review. World J Surg 32:1237–1246

    Article  PubMed  Google Scholar 

  4. Basolo F, Giannini R, Monaco C et al (2002) Potent mitogenicity of the RET/PTC3 oncogene correlates with its prevalence in tall-cell variant of papillary thyroid carcinoma. Am J Pathol 160:247–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Boos LA, Dettmer M, Schmitt A et al (2013) Diagnostic and prognostic implications of the PAX8-PPARγ translocation in thyroid carcinomas – a TMA-based study of 226 cases. Histopathology 63:234–241

    Article  PubMed  Google Scholar 

  6. Brauckhoff M, Machens A, Hess S et al (2008) Premonitory symptoms preceding metastatic medullary thyroid cancer in MEN 2B: an exploratory analysis. Surgery 144:1044–1050

    Article  PubMed  Google Scholar 

  7. Cañadas-Garre M, Fernandez-Escamilla AM, Fernandez-Ballester G et al (2014) Novel BRAFI599Ins mutation identified in a follicular variant of a papillary thyroid carcinoma: a molecular modeling approach. Endocr Pract 20:e75–e79

    Article  PubMed  Google Scholar 

  8. Cancer Genome Atlas Research Network (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676–690

    Article  Google Scholar 

  9. Castro P, Rebocho AP, Soares RJ et al (2006) PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91:213–220

    Article  CAS  PubMed  Google Scholar 

  10. Chakravarty D, Santos E, Ryder M et al (2011) Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 121:4700–4711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen H, Nicol TL, Zeiger MA et al (1998) Hürthle cell neoplasms of the thyroid: are there factors predictive of malignancy? Ann Surg 227:542–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chiosea S, Nikiforova M, Zuo H et al (2009) A novel complex BRAF mutation detected in a solid variant of papillary thyroid carcinoma. Endocr Pathol 20:122–126

    Article  CAS  PubMed  Google Scholar 

  13. Ciampi R, Knauf JA, Kerler R et al (2005) Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 115:94–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ciampi R, Giordano TJ, Wikenheiser-Brokamp K et al (2007) HOOK3-RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr Relat Cancer 14:445–452

    Article  CAS  PubMed  Google Scholar 

  15. Cooper DS, Doherty GM, Haugen BR et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214

    Article  PubMed  Google Scholar 

  16. Vries MM de, Celestino R, Castro P et al (2012) RET/PTC rearrangement is prevalent in follicular Hürthle cell carcinomas. Histopathology 61:833–843

    Article  PubMed  Google Scholar 

  17. DeLellis RA, Lloyd RV, Heitz PU, Eng C (2004) WHO histological classification of thyroid and parathyroid tumours. In: World Health Organization Classification of Tumours. Pathology & genetics. Tumours of endocrine organs. IARC Press, Lyon

  18. Dionigi G, Kraimps JL, Schmid KW et al (2014) Minimally invasive follicular thyroid cancer (MIFTC) – a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg 399:165–184

    Article  PubMed  Google Scholar 

  19. Elisei R, Cosci B, Romei C et al (2008) Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 93:682–687

    Article  CAS  PubMed  Google Scholar 

  20. Frank-Raue K, Machens A, Leidig-Bruckner G et al (2013) Prevalence and clinical spectrum of nonsecretory medullary thyroid carcinoma in a series of 839 patients with sporadic medullary thyroid carcinoma. Thyroid 23:294–300

    Article  CAS  PubMed  Google Scholar 

  21. Führer D, Schmid KW (2010) Benigner Schilddrüsenknoten oder Schilddrüsenmalignom? Internist (Berl) 51:611–619

  22. Führer D, Bockisch A, Schmid KW (2012) Euthyroid goiter with and without nodules – diagnosis and treatment. Dtsch Arztebl Int 109:506–516

    PubMed Central  PubMed  Google Scholar 

  23. Greco A, Miranda C, Pierotti MA (2010) Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol 321:44–49

    Article  CAS  PubMed  Google Scholar 

  24. Harach HR (1997) Histogenesis of thyroid C-cell carcinoma. Curr Top Pathol 91:15–20

    Article  CAS  PubMed  Google Scholar 

  25. He H, Jazdzewski K, Li W et al (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 102:19075–19080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hermann M, Tonninger K, Kober F et al (2010) Minimal-invasives follikuläres Schilddrüsenkarzinom. Chirurg 81:627–635

    Article  CAS  PubMed  Google Scholar 

  27. Ho AL, Grewal RK, Leboeuf R et al (2013) Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 368:623–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hoffmann S, Gläser S, Wunderlich A et al (2006) Targeting the EGF/VEGF-R system by tyrosine-kinase inhibitors – a novel antiproliferative/antiangiogenic strategy in thyroid cancer. Langenbecks Arch Surg 391:589–596

    Article  CAS  PubMed  Google Scholar 

  29. Karger S, Weidinger C, Krause K et al (2009) FOXO3a: a novel player in thyroid carcinogenesis? Endocr Relat Cancer 16:189–199

    Article  CAS  PubMed  Google Scholar 

  30. Karges W (2005) Klinische und molekulare Genetik des Schilddrüsenkarzinoms. Onkologe 11:20–28

    Article  Google Scholar 

  31. Klagge A, Krause K, Schierle K et al (2010) Somatostatin receptor subtype expression in human thyroid tumours. Horm Metab Res 42:237–240

    Article  CAS  PubMed  Google Scholar 

  32. Klein Hesselink EN, Steenvoorden D, Kapiteijn E et al (2015) Response and toxicity of small-molecule tyrosine kinase inhibitors in patients with thyroid carcinoma: systematic review and meta-analysis. Eur J Endocrinol 172:R215–R225

    Article  Google Scholar 

  33. Koperek O, Scheuba C, Cherenko M et al (2008) Desmoplasia in medullary thyroid carcinoma: a reliable indicator of metastatic potential. Histopathology 52:623–630

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Bishop J, Shan Y et al (2013) Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 20:603–610

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lote H, Bhosle J, Thway K et al (2014) Epidermal growth factor mutation as a diagnostic and therapeutic target in metastatic poorly differentiated thyroid carcinoma: a case report and review of the literature. Case Rep Oncol 7:393–400

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mazeh H, Mizrahi I, Halle D et al (2011) Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid 21:111–118

    Article  CAS  PubMed  Google Scholar 

  37. Menon MP, Khan A (2009) Micro-RNAs in thyroid neoplasms: molecular, diagnostic and therapeutic implications. J Clin Pathol 62:978–985

    Article  CAS  PubMed  Google Scholar 

  38. Murugan AK, Xing M (2011) Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 71:4403–4411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Musholt TJ, Fottner C, Weber MM et al (2010) Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J Surg 34:2595–2603

    Article  PubMed  Google Scholar 

  40. Nikiforov YE (2002) RET/PTC rearrangement in thyroid tumors. Endocr Pathol 13:3–16

    Article  CAS  PubMed  Google Scholar 

  41. Nikiforov YE (2011) Molecular analysis of thyroid tumors. Mod Pathol 2:34–43

    Article  Google Scholar 

  42. Nikiforova MN, Kimura ET, Gandhi M et al (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399–5404

    Article  CAS  PubMed  Google Scholar 

  43. Nikiforova MN, Lynch RA, Biddinger PW et al (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326

    Article  CAS  PubMed  Google Scholar 

  44. Ohori NP, Nikiforova MN, Schoedel KE et al (2010) Contribution of molecular testing to thyroid fine-needle aspiration cytology of ‚‚follicular lesion of undetermined significance/atypia of undetermined significance’’. Cancer Cytopathol 118:17–23

    Article  CAS  PubMed  Google Scholar 

  45. Pallante P, Visone R, Croce CM, Fusco A (2010) Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr Relat Cancer 17:91–104

    Article  Google Scholar 

  46. Ricarte-Filho JC, Ryder M, Chitale DA et al (2009) Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69:4885–4893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Rosai J, Carcangiu ML, DeLellis RA (1992) Tumors of the thyroid gland. Atlas of tumor pathology. AFIP, Third Series, Bd 5. Washington, D.C.

  48. Rosai J (2005) Handling of thyroid follicular patterned lesions. Endocr Pathol 16:279–283

    Article  PubMed  Google Scholar 

  49. Rossing M, Kaczkowski B, Futoma-Kazmierczak E et al (2010) A simple procedure for routine RNA extraction and miRNA array analyses from a single thyroid in vivo fine needle aspirate. Scand J Clin Lab Invest 70:529–534

    Article  CAS  PubMed  Google Scholar 

  50. Salvatore G, Giannini R, Faviana P et al (2004) Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 89:5175–5180

    Article  CAS  PubMed  Google Scholar 

  51. Schäffer R, Schmid KW, Tötsch M (2012) Bethesda classification of fine needle punctures of the thyroid. Much ado about nothing really new? Pathologe 33:324–330

    Article  PubMed  Google Scholar 

  52. Schmid KW, Ensinger C (1998) „Atypical“ medullary thyroid carcinoma with little or no calcitonin expression. Virchows Arch 433:209–215

    Article  CAS  PubMed  Google Scholar 

  53. Schmid KW, Sheu SY, Görges R et al (2003) Tumoren der Schilddrüse. Pathologe 24:357–372

    Article  CAS  PubMed  Google Scholar 

  54. Schmid KW, Farid NR (2006) How to define follicular thyroid carcinoma? Virchows Arch 448:385–393

    Article  PubMed  Google Scholar 

  55. Schmid KW (2010) Pathogenese, Klassifikation und Histologie von Schilddrüsenkarzinomen. Onkologe 16:644–656

    Article  Google Scholar 

  56. Schmid KW, Ting S, Sheu SY (2010) Familial thyroid carcinomas. Pathologe 31:485–488

    Article  CAS  PubMed  Google Scholar 

  57. Schmid KW, Reiners C (2011) Wann ist die Feinnadelbiopsie der Schilddrüse am effektivsten? Pathologe 32:169–173

    Article  CAS  PubMed  Google Scholar 

  58. Schmid KW, Sheu SY (2015) Schilddrüse. In: Remmele, 3. Aufl., Kapitel 19, Springer-Verlag (im Druck)

  59. Schütt P, Müller S, Matuszczyk A et al (2011) Zielgerichtete Therapie für Patienten mit Schilddrüsenkarzinom. Tumor Diagn Ther 32:269–276

    Article  Google Scholar 

  60. Schwertheim S, Sheu SY, Worm K et al (2009) Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res 41:475–481

    Article  CAS  PubMed  Google Scholar 

  61. Sheu SY, Schwertheim S, Worm K et al (2007) Diffuse sclerosing variant of papillary thyroid carcinoma: lack of BRAF mutation but occurrence of RET/PTC rearrangements. Mod Pathol 20:779–787

    Article  CAS  PubMed  Google Scholar 

  62. Sheu SY, Grabellus F, Schwertheim S et al (2009) Lack of correlation between BRAF V600E mutational status and the expression profile of a distinct set of miRNAs in papillary thyroid carcinoma. Horm Metab Res 41:482–487

    Article  CAS  PubMed  Google Scholar 

  63. Sheu SY, Grabellus F, Schwertheim S et al (2010) Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer 102:376–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sheu SY, Schmid KW (2010) Multiple endocrine Neoplasien Typ 2. Pathologe 31:449–454 (Erratum in: Pathologe (2011) 32:82)

  65. Sheu SY, Vogel E, Worm K et al (2010) Hyalinizing trabecular tumour of the thyroid-differential expression of distinct miRNAs compared with papillary thyroid carcinoma. Histopathology 56:632–640

    Article  PubMed  Google Scholar 

  66. Soares P, Trovisco V, Rocha AS et al (2003) BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578–4580

    Article  CAS  PubMed  Google Scholar 

  67. Soares P, Lima J, Preto A et al (2011) Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genomics 12:609–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Sobrinho-Simões M, Máximo V, Rocha AS et al (2008) Intragenic mutations in thyroid cancer. Endocrinol Metab Clin North Am 37:333–362

    Article  PubMed  Google Scholar 

  69. Sobrinho-Simões M, Eloy C, Magalhães J et al (2011) Follicular thyroid carcinoma. Mod Pathol 2:10–18

    Article  Google Scholar 

  70. Synoracki S, Schmid ST, Ting S, Schmid KW (2015) Die C-Zellen der Schilddrüse und ihre Pathologie. Teil 2: Medulläres Karzinom der Schilddrüse. Pathologe 36:254–260

    Article  CAS  PubMed  Google Scholar 

  71. Ting S, Sheu-Grabellus SY, Worm K, Schmid KW (2012) MicroRNA profiles in fine needle biopsy of the thyroid. Pathologe 33:331–336

    Article  CAS  PubMed  Google Scholar 

  72. Ting S, Bockisch A, Führer D et al (2012) Feinnadelbiopsie (FNB) der Schilddrüse. Nuklearmediziner 35:1–8

    Article  Google Scholar 

  73. Ting S, Schmid ST, Synoracki S, Schmid KW (2015) Die C-Zellen der Schilddrüse und ihre Pathologie. Teil 1: Normale C-Zellen – Hyperplasie der C-Zellen – Präkanzerose des familiären medullären Karzinoms. Pathologe 36:246–253

    Article  CAS  PubMed  Google Scholar 

  74. Visone R, Pallante P, Vecchione A et al (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26:7590–7595

    Article  CAS  PubMed  Google Scholar 

  75. Volante M, Collini P, Nikiforov YE et al (2007) Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol 31:1256–1264

    Article  PubMed  Google Scholar 

  76. Volante M, Rapa I, Gandhi M et al (2009) RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 94:4735–4741

    Article  CAS  PubMed  Google Scholar 

  77. Wohllk N, Schweizer H, Erlic Z et al (2010) Multiple endocrine neoplasia type 2. Best Pract Res Clin Endocrinol Metab 24:371–387

    Article  CAS  PubMed  Google Scholar 

  78. Wu G, Mambo E, Guo Z et al (2005) Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab 90:4688–4693

    Article  CAS  PubMed  Google Scholar 

  79. Wynford-Thomas D (1994) Thyroid cancer. In: Lemoine N, Neoptolemos J, Cooke T (Hrsg) Cancer. A molecular approach. Blackwell Scientific Publications, S 192–222

  80. Xing M (2008) Recent advances in molecular biology of thyroid cancer and their clinical implications. Otolaryngol Clin North Am 41:1135–1146

    Article  PubMed Central  PubMed  Google Scholar 

  81. Xing M (2010) Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20:697–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Xing M, Liu R, Liu X et al (2014) BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 32:2718–2726

    Article  CAS  PubMed  Google Scholar 

  83. Yuan ZM, Yang ZL, Zheng Q (2014) Deregulation of microRNA expression in thyroid tumors. J Zhejiang Univ Sci B 15:212–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Zhu Z, Ciampi R, Nikiforova MN et al (2006) Prevalence of Ret/Ptc rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91:2672–2677

    Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. K.W. Schmid und D. Führer geben an, dass kein Interessenkonflikt besteht.

Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.W. Schmid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, K., Führer, D. Rolle der Molekularpathologie beim Schilddrüsenkarzinom. Onkologe 21, 584–596 (2015). https://doi.org/10.1007/s00761-014-2858-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-014-2858-0

Schlüsselwörter

Keywords

Navigation