Skip to main content
Log in

Non-isocyanate urethane linkage formation using l-lysine residues as amine sources

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Bio-based polyurethane materials are broadly applied in medicine as drug delivery systems. Nevertheless, their synthesis comprises the use of petroleum-based toxic amines, isocyanates and polyols, and their biocompatibility or functionalization is limited. Therefore, the use of lysine residues as amine sources to create non-isocyanate urethane (NIU) linkages was investigated. Therefore, a five-membered biscyclic carbonate (BCC) was firstly synthetized and reacted with a protected lysine, a tripeptide and a heptapeptide to confirm the urethane linkage formation with lysine moiety and to optimize reaction conditions. Afterwards, the reactions between BCC and a model protein, elastin-like protein (ELP), and β-Lactoglobulin (BLG) obtained from whey protein, respectively, were performed. The synthesized protein materials were structural, thermally and morphologically characterized to confirm the urethane linkage formation. The results demonstrate that using both simple and more complex source of amines (lysine), urethane linkages were effectively achieved. This pioneering approach opens the possibility of using proteins to develop non-isocyanate polyurethanes (NIPUs) with tailored properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bähr M, Mülhaupt R (2012) Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion. Green Chem 14:483–489

    Article  CAS  Google Scholar 

  • Bernardim B, Cal PMSD, Matos MJ, Oliveira BL, Martínez-Sáez N, Albuquerque IS, Perkins E, Corzana F, Burtoloso ACB, Jiménez-Osés G (2016) Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nat Commun 7:13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booysen J, Marx S, Muller LC. Vermeulen U, Grobler A (2015) Synthesis of novel non-isocyanate polyhydroxyurethane from l-lysine and its application. In: 7th International Conference on Latest Trends in Engineering & Technology, pp 184–190

  • Brown J, Davidowski S, Xu D, Cebe P, Onofrei D, Holland G, Kaplan D (2016) Thermal and structural properties of silk biomaterials plasticized by glycerol. Biomacromol 17:3911–3921

    Article  CAS  Google Scholar 

  • Burke A, Hasirci N (2004) Polyurethanes in biomedical applications. Adv Exp Med Biol 553:83–101

    Article  CAS  PubMed  Google Scholar 

  • Butnaru M, Bredetean O, Macocinschi D, Dimitriu CD, Knieling L, Harabagiu V (2012) Biocompatibility and biological performance of the improved polyurethane membranes for medical applications. Polyurethane 10:201–228

    Google Scholar 

  • Carré C, Bonnet L, Avérous L (2015) Solvent- and catalyst-free synthesis of fully biobased nonisocyanate polyurethanes with different macromolecular architectures. RSC Adv 5:100390–100400

    Article  CAS  Google Scholar 

  • Carré C, Zoccheddu H, Delalande S, Pichon P, Avérous L (2016) Synthesis and characterization of advanced biobased thermoplastic nonisocyanate polyurethanes, with controlled aromatic-aliphatic architectures. Eur Polym J 84:759–769

    Article  CAS  Google Scholar 

  • Chan WY, Bochenski T, Schmidt JE, Olsen BD (2017) Peptide domains as reinforcement in protein-based elastomers. ACS Sustain Chem Eng 5:8568–8578

    Article  CAS  Google Scholar 

  • Cobo I, Li M, Sumerlin BS, Perrier S (2014) Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat Mater 14:143

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Dworakowska S, Bogdal D, Boutevin B, Caillol S (2015) A new way of creating cellular polyurethane materials: NIPU foams. Eur Polym J 66:129–138

    Article  CAS  Google Scholar 

  • Cornille A, Guillet C, Benyahya S, Negrell C, Boutevin B, Caillol S (2016) Room temperature flexible isocyanate-free polyurethane foams. Eur Polym J 84:873–888

    Article  CAS  Google Scholar 

  • Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552

    Article  CAS  Google Scholar 

  • Elena D, Vincent F, Guillaume M, Frédéric S, Rémi A, Stéphane F, Sylvain C (2016) Thermoresponsive crosslinked isocyanate-free polyurethanes by Diels-Alder polymerization. J Appl Polym Sci 134:44408–44419

    Google Scholar 

  • Fabian H, Mäntele W (2006) Infrared spectroscopy of proteins. Handbook of Vibrational Spectroscopy. Biochem Appl 2006:3399–3425

    Google Scholar 

  • Gerard L (2014) Renewable polyols for polyurethane synthesis via thiol-ene/yne couplings of plant oils. Macromol Chem Phys 214:415–422

    Google Scholar 

  • Gonzales M, Simon J, Ghoorchian A, Scholl Z, Lin S, Rubinstein M, Marszalek P, Chilkoti A, López G, Zhao X (2017) Strong, tough, stretchable, and self-adhesive hydrogels from intrinsically unstructured proteins. Adv Mater 29:1604743

    Article  CAS  Google Scholar 

  • Hannes B, Maria F, Moritz B, Rolf M (2014) Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. Macromol Rapid Commun 35:1238–1254

    Article  CAS  Google Scholar 

  • Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL (2012) Protein-based composite materials. Mater Today 15:208–215

    CAS  Google Scholar 

  • Istanbullu H, Ahmed S, Sheraz MA, Rehman I (2013) Development and characterization of novel polyurethane films impregnated with tolfenamic acid for therapeutic applications. Biomed Res Int 2013:1–8

    Article  CAS  Google Scholar 

  • Kihara N, Kushida Y, Endo T (1996) Cyclic carbonate and l-lysine derivatives. J Polym Sci 34:2173–2179

    Article  CAS  Google Scholar 

  • Kreye O, Mutlu H, Meier MAR (2013) Sustainable routes to polyurethane precursors. Green Chem 15:1431–1455

    Article  CAS  Google Scholar 

  • Lligadas G, Ronda JC, Galià M, Cadiz V (2010) Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes. Polymers 2(4):440–453

    Article  CAS  Google Scholar 

  • Machado R, Da Costa A, Sencadas V, Pereira AM, Collins T, Rodríguez-Cabello JC, Lanceros-Méndez S, Casal M (2015) Exploring the properties of genetically engineered silk-elastin-like protein films. Macromol Biosci 15:1698–1709

    Article  CAS  PubMed  Google Scholar 

  • Macocinschi D, Filip D, Vlad S, Tuchilus CG, Cristian AF, Barboiu M (2014) Polyurethane/β-cyclodextrin/ciprofloxacin composite films for possible medical coatings with antibacterial properties. J. Mater. Chem. B 2(6):681–690

    Article  CAS  Google Scholar 

  • Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Isocyanate-free routes to polyurethanes and poly (hydroxy urethane). S Chem Rev 115:12407–12439

    Article  CAS  PubMed  Google Scholar 

  • Mallakpour S, Rafiee Z (2008) Use of ionic liquid and microwave irradiation as a convenient, rapid and eco-friendly method for synthesis of novel optically active and thermally stable aromatic polyamides containing N-phthaloyl-l-alanine pendent group. Polym Degrad Stab 93:753–759

    Article  CAS  Google Scholar 

  • Mallakpour S, Tirgir F, Sabzalian MR (2010) Novel biobased polyurethanes synthesized from nontoxic phenolic diol containing l-tyrosine moiety under green media. J Polym Environ 18:685–695

    Article  CAS  Google Scholar 

  • Namazi H (2017) Polymers in our daily life. Bioimpacts 7:7374

    Article  CAS  Google Scholar 

  • Olsen B (2013) Engineering materials from proteins. AIChE J 59:3558–3568

    Article  CAS  Google Scholar 

  • Poussard L, Mariage J, Grignard B, Detrembleur C, Jéroîme C, Calberg C, Heinrichs B, De Winter J, Gerbaux P, Raquez JM (2016) Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics. Macromolecules 49:2162–2171

    Article  CAS  Google Scholar 

  • Ramos Ó, Reinas I, Silva S, Fernandes J, Cerqueira M, Pereira R, Vicente A, Poças F, Pintado M, Malcata X (2013) Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll 30:110–122

    Article  CAS  Google Scholar 

  • Rokickia G, Parzuchowskia PG, Magdalena M (2015) Non-isocyanate polyurethanes: synthesis, properties and applications. Polym Adv Technol 26:707–761

    Article  CAS  Google Scholar 

  • Silva NHCS, Vilela C, Marrucho IM, Freire CSR, Pascoal Neto C, Silvestre AJD (2014) Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J Mater Chem B 2:3715–3740

    Article  CAS  Google Scholar 

  • Spicer CD, Davis BG (2014) Selective chemical protein modification. Nat Commun 5:4740

    CAS  PubMed  Google Scholar 

  • Thomas S, Datta J, Haponiuk J, Reghunadhan A (2017) Polyurethane polymers: composites and nanocomposites, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • van Velthoven J, Gootjes L, van Es D, Noordover B, Meuldijk J (2015) Poly(hydroxyurethane)s based on renewable diglycerol dicarbonate. Eur Polym J 70:125–135

    Article  CAS  Google Scholar 

  • Wang F, Yang C, Hu X (2014) Advanced protein composite materials. In lightweight materials from biopolymers and biofibers. ACS Symposium Series 1175:177–208

    Article  CAS  Google Scholar 

  • Wang C, Zheng Y, Sun Y, Fan J, Qin Q, Zhao Z (2016) A novel biodegradable Polyurethane based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ethylene glycol) as promising biomaterials with the improvement of mechanical properties and hemocompatibility. Polym Chem 7:6120–6132

    Article  CAS  Google Scholar 

  • Worm B, Lotze HK, Jubinville I, Wilcox C, Jambeck J (2017) Plastic as a persistent marine pollutant. Annu Rev Environ Resour 42:1–26

    Article  Google Scholar 

Download references

Acknowledgements

TSSIPRO—Technologies For Sustainable And Smart Innovative Products, NORTE-01-0145-FEDER-000015 and COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013. The authors would like to thank Professor Sílvia Lima and Professor Susana Costa from the Chemistry Department at the University of Minho for kindly allow the use of Microwave CEM Discover SPS equipment and for all knowledge shared during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. S. Soares.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This research did not involve human participants or animals.

Informed consent

None.

Additional information

Handling Editor: F. Albericio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixoto, C., Soares, A.M.S., Araújo, A. et al. Non-isocyanate urethane linkage formation using l-lysine residues as amine sources. Amino Acids 51, 1323–1335 (2019). https://doi.org/10.1007/s00726-019-02770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02770-x

Keywords

Navigation