Skip to main content

Polyurethanes in Biomedical Applications

  • Conference paper
Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 553))

Abstract

Polyurethanes are the most commonly used materials in the production of blood contacting devices such as heart valves or artificial veins and arteries. They comprise a large family of materials with the only common characteristic of the presence of urethane linkages along the large molecular chains. In general urethane linkages form by the reaction of isocyanates and alcohols. During the preparation and the curing processes of polyurethanes, besides the formation of urethane linkages, many other reactions take place and lead to formation of various bonds such as allophanate, biuret, acylurea or isocyanurate and these bonds may lead to further branching or crosslinking affecting the whole physical, chemical and mechanical properties as well as the biocompatibilities of the resulting polymers1,2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hasirci, N., 1991, Polyurethanes. In High Performance Biomaterials: Comprehensive Guide to Medical and Pharmaceutical Application (M. Szycher, ed), Technomic Pub.Co., Lancaster, pp.71–91.

    Google Scholar 

  2. Hasirci, N., 1994, Polyurethanes as biomedical materials. In Surface Properties of Biomaterials, (R. West and G. Batts, eds), Butterworth- Heineman Ltd., Oxford, pp.81–90.

    Google Scholar 

  3. Bayer, O., Muller, E., Peterson, S., Piepenbrink, H.F., and Windemuth, E., 1950, Polyurethanes VI. New Highly Elastic Synthetics, Vulcollans, Rubber Chem. Technol., 23: 81

    Article  Google Scholar 

  4. Bikales, M.N., 1969. Polyurethanes. In Encyclopedia of Polymer Science and Technology, Interscience Publishers John Wiley and Son Inc., New York, 11: 507.

    Google Scholar 

  5. Mirkovitch, V., Akutsu, T., and Kolff, W.J., 1962, Polyurethane Aortas In Dogs-Three-Year Results. Trans .Am. Soc.Artiiflntern. Organs, 8: 79.

    Article  Google Scholar 

  6. Sharp, W.V., Gardener, D.L., and Anderson, G.J., 1966, A Bioelectric Polyurethane Elastomer for Intravascular Replacement. Trans.Am.Soc.Artiif.Intern.Organs, 12: 1979.

    Google Scholar 

  7. Szycher, M., Poirier, V.L., and Dempsey, D.J., 1983, Development of an aliphatic biomedical-grade polyurethane elastomer. J.Elast.Plast., 15: 81.

    Article  Google Scholar 

  8. Szycher, M., Poirier, V.L., and Dempsey, D.J., 1983, Development and Testing of Melt-Processable Aliphatic Polyurethane Elastomers. Trans.Soc.Biomater., 6: 49.

    Google Scholar 

  9. Ulubayram, K. and Hasirci, N., 1991, Polyurethanes: Chemistry and Properties. Proceedings of Second Mediterranean School on Science and Technology of Advanced Polymer -Based Materials. pp.1–4.

    Google Scholar 

  10. Ulubayram, K. and Hasirci, N., 1995, Preparation of Polyurethane Elastomer For Biomedical Applications. In Proceedings of the Second National Symposium on Biomedical Science and Technology (V.Hasirci, ed.), pp.65–66.

    Google Scholar 

  11. Kutay, S., Tincer, T. and Hasirci N., 1990, Polyurethanes as Biomedical Materials. British Polymer Journal, 23: 267–272.

    Article  Google Scholar 

  12. Garrett, J.T., Runt, J., and Lin, J.S., 2000, Microphase separation of segmented poly(urethane urea) block copolymers. Macromolecules 33(17): 6353–6359.

    Article  Google Scholar 

  13. Nojima, K., Sanui, K., Ogata, N., Yui, N., Kataoka, K., and Sakurai, Y., 1987, Material characterization of segmented polyether poly(urethane-urea-amide)s and its implication in blood compatibility. Polymer, 28: 1017–1024.

    Article  Google Scholar 

  14. Takahara, A., Tashita, J.I., Kajiyama, T., Takayanagi, M., and MacKnight, W.J., 1985, Microphase separated structure, surface composition and blood compatibility of segmented poly(urethaneureas) with various soft segment components. Polymer 26: 987–996.

    Article  Google Scholar 

  15. Takahara, A., Okkema, A.Z., Wabers, H., and Cooper, S.L., 1991, Effect of hydrophilic soft segment side chains on the surface properties and blood compatibility of segmented poly(urethaneureas). JBiomed Mater Res, 25: 1095–1118.

    Article  Google Scholar 

  16. Lelah, M.D., Grasel, T.G., Pierce, J.A., and Cooper, S.L., 1986, Ex vivo interactions and surface property relationships of polyetherurethanes. JBiomed. Mater. Res., 20: 433–468.

    Article  Google Scholar 

  17. Hasirci, N., 1993, Synthesis of Polyurethane Elastomers for Biomedical Use. In Ohio Science Workbook- Polymers (M.R. Steward, ed.) The Ohio Academy of Sci., Columbus, Ohio, USA, pp. 38–41.

    Google Scholar 

  18. Boretos, J.W., and Pierce, W.S., 1968, A Polyether Polymer. J. Biomed. Mat. Res. 2: 121.

    Article  Google Scholar 

  19. Boretos, J.W., 1973, Concise Guide to Biomedical Polymers, Their Design Fabrication and Molding, Charles C. Thomas-Publisher, Springfield, IL, pp.10.

    Google Scholar 

  20. Lyman, D.J., Loo, B.H., 1967, New Synthetic Membranes for Dialysis IV- Copolyether Urethane Membrane Systems. J.Biomed.Mat.Res., 1: 17–26.

    Article  Google Scholar 

  21. Nylias, E., 1970, Develpoment of Blood Compatible Elastomers Theory, Practice and In-Vivo Performance. 23 rd Conference on Engineering in Medicine and Biology, 12: 147.

    Google Scholar 

  22. Lelah, M.D., Lambrecht, L.K., Young, B.R., and Cooper, S.L., 1983, Physicochemical characterization and in vivo blood tolerability of cast and extruded Biomer. J. Biomed. Mater. Res., 17: 1–22.

    Article  Google Scholar 

  23. Hanson, S.R., Harker, L.A., Ratner, B.D., and Hoffman, A.S., 1980, In vivo evaluation of artificial surfaces with a nonhuman primate model of arterial thrombosis, J. Lab. Clin. Med., 95(2): 289–296.

    Google Scholar 

  24. Szycher, M., and Poirier, V.L., 1984, Polyurethanes in Implantable Devices. Plastic Technology, pp.45.

    Google Scholar 

  25. Bouchemal, K., Briançon, S., Perrier, E., Fessi, H., Bonnet, I., and Zydowicz, N., 2004, Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification, Int. J. Pharmaceutics, 269(1):89–100

    Article  Google Scholar 

  26. Buma, P., Ramrattan, N.N., van Tienen T.G. and Veth R.P.H., 2004, Tissue engineering of the meniscus, Biomaterials, 25(9), 1523–1532.

    Article  Google Scholar 

  27. Shukla, P.G., Kalidhass, B., Shah, A., and Palaskar, D.V., 2002, Preparation and characterization of microcapsules of water soluble pesticide monocrotophos using polyurethane as carrier material. J Microencapsulation, 19(3): 293–304.

    Article  Google Scholar 

  28. Szycher, M., and Poirier, V.L., 1984, Polyurethanes in Implantable Devices. Plastic Technology, pp.45.

    Google Scholar 

  29. Huang, J.C., and Jennings, E.M., 2004, The effect of temperature on controlled release of heparin from polyurethane and ethylene vinyl acetate copolymer. Int. J. Polym. Mater., 53: 69–78.

    Article  Google Scholar 

  30. Han, D.K., Park, K.D., Ahn, K., Jeong, S.Y., and Kim, Y.H., 1989, Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. J.Biomed. Mater. Res. 23: 87–104.

    Article  Google Scholar 

  31. Weerwind, P.W., van der Veen, F.H., Lindhout, T., de Jong, D.S., and Calahan, F.T., 1998, Ex vivo testing of heparin-coated extracorporeal circuits: Bovine experiments. Int. J.Artiif. Organs, 21: 291–298.

    Google Scholar 

  32. Marois, Y., Chakfe, N., Guidoin, R., Duhamel, R.C., Roy, R., Marois, M., King, M.W., and Douville, Y., 1996, An albumin-coated polyester arterial graft: in vivo assessment of biocompatibility and healing characteristics. Biomaterials, 17: 3–14.

    Article  Google Scholar 

  33. DeQueiroz, A.A., Barrak, E.R., Gil, H.A., and Higa, O.Z., 1997, Surface studies of albumin immobilized onto PE and PVC films. J.Biomater Sci Polym Ed, 8: 667–681.

    Article  Google Scholar 

  34. Seiferd, B., Romanuk, P., and Groth, T., 1997, Covalent immobilization of hirudin improves the haemocompatibility of polylactide-polyglycokide in vitro. Biomaterials, 18: 1495–1502.

    Article  Google Scholar 

  35. Bos, G.W., Scharenborg, N.M., Poot, A.A., Engbers, G.H., Beugeling, T., van Aken, W.G., and Feijen, J., 1999, Blood compatibility of surfaces with immobilized albumin-heparin conjugate and effect of endothelial cell seeding on platelet adhesion. J. Biomed. Mater. Res., 47: 279–291.

    Article  Google Scholar 

  36. Yoda, R., 1998, Elastomers for biomedical applications, J.Biomater. Sci. Polym. Ed., 9: 561–626.

    Article  Google Scholar 

  37. Pasic, M., Muller Glauser, W., von Segesser, L., Odermatt, B., Lachat, M., and Turina, M., 1996, Endothelial cell seeding improves patency of synthetic vascular grafts: manual versus automatized method. Eur. J.Cardio Thorac Surg., 10: 372–379.

    Article  Google Scholar 

  38. Ryu, G.H., Han, D.K., Park, S., Kim, M., Kim, Y.H., and Min, B., 1995, Surface characteristics and properties of lumbrokinase immobilized polyurethane. J.Biomed Mater Res, 29: 403–409.

    Article  Google Scholar 

  39. Ratner, B.D., 1998, Molecular design strategies for biomaterials that heal. Macromol Symposia, 130: 327–335.

    Article  Google Scholar 

  40. Morra, M., Occhiello, E., and Garbassi, F., 1993, Surface modification of blood contacting polymers by poly(ethyleneoxide). Clin Mater 14: 255–265.

    Article  Google Scholar 

  41. Han, D.K., Jeong, S.Y., and Kim, Y.H., 1989, Evaluation of blood compatibility of PEO grafted and heparin immobilized polyurethanes, 1 Biomed Mater Res: Appl Biomater, 23 (A2): 211–228.

    Google Scholar 

  42. Wang, D.A., Ji, J., Gao, C.Y., Yu, G.H., and Feng, L.X., 2001, Surface coating of stearyl poly(ethylene oxide) coupling-polymer on polyurethane guiding catheters with poly(ether urethane) film-building additive for biomedical applications. Biomaterials, 22: 1549–1562.

    Article  Google Scholar 

  43. Chen, K.Y., Kuo, J.F., and Chen, C.Y., 2000, Synthesis characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials, 21: 161–171.

    Article  Google Scholar 

  44. Ito, Y., Iguchi, Y., Kashiwagi, T., and Imanishi, Y., 1991, Synthesis and nonthrombogeneity of polyetherurethaneurea film grafted with poly(sodium vinyl sulfonate). J. Biomed. Mater. Res., 25: 1347–1361.

    Article  Google Scholar 

  45. Okkema, A.Z., Yu, X.H., and Cooper, S.L., 1991, Physical and blood contacting characteristics of propyl sulfonate grafted Biomer. Biomaterials, 12: 3–12.

    Article  Google Scholar 

  46. Okkema, A.Z., and Cooper, S.L., 1991, Effect of carboxylated and/or sulfanate ion incorparation on the physical and blood-contacting properties of a polyetherurethane. Biomaterials, 12: 668–676.

    Article  Google Scholar 

  47. Lee, J.H., Khang, G., Lee, J.W., and Lee, H.B., 1998, Platelet adhesion onto chargeable functional group gradient surfaces. J. Biomed. Mater. Res., 40: 180–186.

    Article  Google Scholar 

  48. Abraham, G.A., Queiroz, A. A., Roman, J.S., 2002, Immobilization of a nonsteroiddal antiinflammatory drug onto commercial segmented polyurethane surface to improve haemocompatibility properties. Biomaterials, 23: 1625–1638.

    Article  Google Scholar 

  49. Morimoto, N., Iwasaki, Y., Nakabayashi, N., and Ishihara, K., 2002, Physical properties and blood compatibility of surface-modified segmented polyurethane by semi-interpenetrating polymer networks with a phospholipid polymer. Biomaterials, 23(24): 4881–4887.

    Article  Google Scholar 

  50. Ishihara, K., Fujita, H., Yoneyama, T., and Iwasaki, Y., 2000, Antithrombogenic polymer alloy composed of 2-methacryloyloxyethyl phosphorylcholine polymer and segmented polyurethane. J. Biomater. Sci. Polym. Edn., 11(11): 1183–1195.

    Article  Google Scholar 

  51. Yoneyama, T., Sugihara, K., Ishiara, K., Iwasaki, Y., and Nakabayashi, N., 2002, The vascular prosthesis without pseudointima prepared by antithrombogenic phospholipid polymer. Biomaterials, 23: 1455–1459.

    Article  Google Scholar 

  52. Korematsu, A., Takemoto, Y., Nakaya, T., and Inoue, H., 2002, Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface. Biomaterials, 23: 263–271.

    Article  Google Scholar 

  53. Zhang, J., Yuan, J., Yuan, Y., Zang, X., Shen, J., and Lin, S., 2003, Platelet adhesive resistance of segmented polyurethane film surface-grafted with vinyl benzyl sulfo monomer of ammonium zwitterions. Biomaterials, 24: 4223–4231.

    Article  Google Scholar 

  54. Smith, D.J., Chakravarthy, D., Pulfer, S., Simmons, M.L., Hrabie, J.A., Citro, M.L., Saavedra, J.E., Davies, K.M., Hutsell, T.C., Mooradian, D.L., Hanson, S.R., and Keefer, L.K., 1996, Nitric oxide releasing polymers containing [N(O)NO] group. J. Med. Chem., 39:1148–1156.

    Article  Google Scholar 

  55. Movery, K.A., Schoenfisch, M.H., Saavedra, J.E., Keefer, L.K., and Meyerhoff, M.E., 2000, Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. Biomaterials, 21:9–21.

    Article  Google Scholar 

  56. Duan, X., and Lewis, R.S., 2002, Improved haemocompatibility of cystein-modified polymers via endogenous nitric oxide. Biomaterials, 23: 1197–1203.

    Article  Google Scholar 

  57. Logeart-Avramoglou, D., and Jozefonvicz, J., 1999, Carboxymethyl benzylamide sulfonate dextrans [CMDBS], a family of biospeciflc polymers endowed with numerous biological properties: a review. J. Biomed. Mater. Res. Appl. Biomater., 48(4):578–590.

    Article  Google Scholar 

  58. Roman, S.J., Bujan, J., Bellon, J.M., Gallardo, A., Escudero, M.C., Jorge, E., Haro, J., Alvarez, L., Castillo, J.L., 1996, Experimental study of the antithrombogenic behavior of Dacron vascular grafts coated with hydrophilic acrylic copolymers bearing salicilic acid residues. J. Biomed. Mater. Res., 32: 19–27.

    Article  Google Scholar 

  59. Zhu, Y., Gao, C, He, T., and Shen J., 2004, Endothelium regeneration on luminal surface of polyurethane vascular scaffold medified with diamine and covalently grafted with gelatin, Biomaterials, 25:423–430.

    Article  Google Scholar 

  60. Wang, Z.F., Wang, B., Yang, Y.R. and Hu C.P., 2003, Correlations between gas permeation and free-volume hole properties of polyurethane membranes, European Polymer J., 39(12):2345–2349.

    Google Scholar 

  61. Liu, Q., Runt, J., Felder, G., Rosenberg, G., Snyder, A.J., Weiss, W.J., Lewis, J., and Werley, T., 2000, In vivo and in vitro stability of modified poly(urethaneurea) blood sacs. J. Biomat. Appl.,14(4): 349–366.

    Article  Google Scholar 

  62. Weisberg, D.M., Gordon, B., Rosenberg, G., Snyder, A.J., Benesi, A., Runt, J., 2000, Synthesis and characterization of amphiphilic poly(urethaneurea)-comb-polyisobutylene copolymers. Macromolecules, 33 (12): 4380–4389.

    Article  Google Scholar 

  63. Xu, R.J., Manias, E., Snyder, A.J., Runt, J., 2001, New biomedical poly(urethane urea) -Layered silicate nanocomposites. Macromolecules, 34 (2): 337–339.

    Article  Google Scholar 

  64. Ulubayram, K., and Hasirci, N., 1992, Polyurethanes: Effect of Chemical Composition on Mechanical Properties and Oxygen Permeability. Polymer, 33(10): 2084–2088.

    Article  Google Scholar 

  65. Park, H.B., Kim C.K., and Lee Y.M., Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes, J. Membrane Science, 204: 257–269.

    Google Scholar 

  66. Zdrahala, R.J., and Zdrahala, I.J., 1999, Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J. Biomater. Appl. y 14:67–90.

    Google Scholar 

  67. Kim, Y.H., Han, D.K., Park, D.K., and Kim, S.H., 2003, Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept, Biomaterials, 24(l3):2213–2223.

    Article  Google Scholar 

  68. van Blitterswijk, C.A., van der Brink J., Leenders, H., Hessling, S.C., and Bakker, D., 1991, Polyactive: a bone bonding polymer effect of PEO/PBT proportion, Trans Soc Biomater, 14:11

    Google Scholar 

  69. Tang, Z.G., Teoh, S.H., McFarlane, W., Poole-Warren, L.A., and Umezu, M., 2002, In vitro calcification of UHMWPE/PU composite membrane, Materials Sci. Eng., C-20:149–152.

    Google Scholar 

  70. Tang, Z.G., Teoh, S.H., McFarlane, W., Warren, L.P., and Umezu, M., 2003, Compression- induced changes on physical structures and calcification of the aromatic poly ether polyurethane composite. J. Biomater. Sci. Polym. Ed., 14(10): 1117–1133.

    Article  Google Scholar 

  71. Yang, M., Zhang, Z., Hahn, C, King, M.W., and Guidoin, R., 1999, Assessing the resistance to calcification of polyurethane membranes used in the manufacture of ventricles for a totally implantable artificial heart. J. Biomed. Mater. Res., 48(5): 648–659.

    Article  Google Scholar 

  72. Miao, X., Hu, Y., Liu, J., and Wong, A.P., Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements, Materials Letters, 58:397–402.

    Google Scholar 

  73. Hasirci, N., 1987, Surface modification of charcoal by glow-discharge: the effect on blood ceils. J. Appl. Polym. Sci., 34: 2457–2468.

    Article  Google Scholar 

  74. Kayirhan, N., Denizli, A., Hasirci, N., 2001, Adsorption of Blood Proteins on Glow-discharge Modified Polyurethane Membranes. J. Appl. Polym. Sci., 81: 1322–1332.

    Article  Google Scholar 

  75. Hasirci, N., and Burke, A., 1987, A novel polyurethane film for biomedical use. J. Bioactive and Compatible Polymers, 2: 131–141.

    Article  Google Scholar 

  76. Burke, A., Hasirci, V.N. and Hasirci, N., 1988, Polyurethane Membranes, J. Bioactive and Compatible Polymers, 3: 232–242.

    Article  Google Scholar 

  77. Ulubayram, K., and Hasirci, N., 1991, Polyurethanes: Chemistry and Properties, Procedings of Second Mediterranean School on Science and Technology of Advanced Polymer -Based Materials, pp: 1–4.

    Google Scholar 

  78. Ulubayram, K., and Hasirci, N., 1993, Properties of plasma modified polyurethane surfaces. J. Colloids and Surfaces: Biointeractions, 1: 261–269.

    Article  Google Scholar 

  79. Ozdemir, Y., and Hasirci, N., 2002, Surface modification of polyurethane membranes. Technology and Health Care, 10: 316–319.

    Google Scholar 

  80. Ozdemir, Y., Serbetci K., and Hasirci, N., 2002, Oxygen Plasma Modification of Polyurethane Membranes. J. Mat. Sci, Materials in Medicine, JMS: MIM, 13:1147–1152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Burke, A., Hasirci, N. (2004). Polyurethanes in Biomedical Applications. In: Hasirci, N., Hasirci, V. (eds) Biomaterials. Advances in Experimental Medicine and Biology, vol 553. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48584-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48584-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0988-9

  • Online ISBN: 978-0-306-48584-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics