Skip to main content
Log in

Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2′-Bis(2-oxazoline) Chain Extending

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

An aliphatic polyester based poly(ester amide)s (PEA) consisting of poly (L-lactic acid) and poly(butylene succinate) was successfully prepared via chain extension reaction of poly(L-lactic acid)-dicarboxylic acid (PLLA-COOH) and poly(butylene succinate)-dicarboxylic acid (PBS-COOH) using 2,2′-bis(2-oxazoline) as a chain extender. PLLA-COOH was obtained by direct polycondensation of L-lactic acid in the presence of 1, 4-succinic acid. PBS-COOH was synthesized by condensation polymerization of 1,4-butylene glycol with excessive succinic acid. The structures of PLLA-COOH, PBS-COOH, and PEAs were characterized by fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (1H NMR). The molar masses were determined by gel permeation chromatography (GPC). The thermal properties of PLLA-COOH, PBS-COOH, and PEAs were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The lattice parameters of PLLA-COOH, PBS-COOH, and PEAs were investigated by X-ray diffraction (XRD). Furthermore, The mechanical properties were characterized by tensile testing and notch Izod impact testing. The FTIR and 1H NMR results demonstrated the formation of PLLA-COOH, PBS-COOH, and PEAs. The GPC measurements showed that the molar masses of copolymer PEAs decreased with increasing PBS-COOH content. The TGA analysis confirmed that the introduction of PBS improved the thermal properties. DSC data indicated that the melting temperatures of the PEAs were lower than that of the prepolymers. The results of XRD suggested that the PLLA crystal structures was destroyed by the PBS units, and the crystallization of the PEAs mainly attributed to the PBS chain segments.The introduction of PBS units into the polymer structure improved the toughness of PLLA, which was detected in mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lunt, Polym Degrad. Stab., 59, 145 (1998).

    Article  CAS  Google Scholar 

  2. M. J. Soares, P.-K. Dannecker, C. Vilela, J. Bastos, M. A. R. Meier, and A. F. Sousa, Eur. Polym. J., 90, 301 (2017).

    Article  CAS  Google Scholar 

  3. K. M. Zia, A. Noreen, M. Zuber, S. Tabasum, and M. Mujahid, Int. J. Biol. Macromol., 82, 1028 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. V. Nagarajan, K. Zhang, M. Misra, and A. K. Mohanty, ACS Appl. Mater. Interfaces, 7, 11203 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. L. Sha, Z. Chen, Z. Chen, A. Zhang, and Z. Yang, Int. J. Polym. Sci., 2016, 1 (2016).

    Article  CAS  Google Scholar 

  6. W. Zhong, J. Ge, and Z. Gu, J. Appl. Polym. Sci., 74, 2546 (2015).

    Article  Google Scholar 

  7. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Prog. Polym. Sci., 35, 338 (2010).

    Article  CAS  Google Scholar 

  8. L. Liu, J. Yu, L. Cheng, and W. Qu, Compos. Part A: Appl. Sci. Manuf., 40, 669 (2009).

    Article  CAS  Google Scholar 

  9. R. Sinha, S. O. Kazuaki, and O. Masami, Macromolecules, 36, 2355 (2003).

    Article  CAS  Google Scholar 

  10. N. Zhu, M. Ye, D. Shi, and M. Chen, Macromol. Res., 25, 165 (2017).

    Article  CAS  Google Scholar 

  11. R. Supthanyakul, N. Kaabbuathong, and S. Chirachanchai, Polymer, 105, 1 (2016).

    Article  CAS  Google Scholar 

  12. X. Zhang and Y. Zhang, Polymer, 140, 374 (2016).

    CAS  Google Scholar 

  13. J. B. Zeng, Y. D. Li, and W. D. Li, Ind. Eng. Chem. Res., 48, 1706 (2009).

    Article  CAS  Google Scholar 

  14. J.-M. Raquez, Y. Habibi, M. Murariu, and P. Dubois, Prog. Polym. Sci., 38, 1504 (2013).

    Article  CAS  Google Scholar 

  15. T. Gurunathan and S. K. Nayak, Polym. Adv. Technol., 27, 1484 (2016).

    Article  CAS  Google Scholar 

  16. M. Pluta, J. Bojda, E. Piorkowska, M. Murariu, L. Bonnaud, and P. Dubois, Polym. Test., 61, 35 (2017).

    Article  CAS  Google Scholar 

  17. Y. Zhou, L. Lei, B. Yang, J. Li, and J. Ren, Polym. Test., 60, 78 (2017).

    Article  CAS  Google Scholar 

  18. M. Ajioka, K. Enomoto, and K. Suzuki, J. Environ. Polym. Degrad., 3, 225 (1995).

    Article  CAS  Google Scholar 

  19. V. Sedlarik, P. Kucharczyk, V. Kasparkova, J. Drbohlav, A. Salakova, and P. Saha, J. Appl. Polym. Sci., 116, 1597 (2010).

    CAS  Google Scholar 

  20. Q. Gao, P. Lan, and H. Shao, Polym. J., 34, 786 (2002).

    Article  CAS  Google Scholar 

  21. A. Chuma, H. W. Horn, and W. C. Swope, J. Am. Chem. Soc., 130, 6749 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. M. Ryner, S. A. Kajsa, and C. A. Albertsson, Macromolecules, 34, 3877 (2010).

    Article  CAS  Google Scholar 

  23. M. S. And and A. Södergård, Macromolecules, 32, 6412 (2013).

    Google Scholar 

  24. Y. Zhao, X. Shuai, and C. A. Chuanfu, Chem. Mater., 15, 2836 (2003).

    Article  CAS  Google Scholar 

  25. J. L. Eguiburu, J. Sanroman, and B. Mjf, Polymer, 36, 173 (1995).

    Article  CAS  Google Scholar 

  26. A.-L. Goffin, E. Duquesne, S. Moins, M. Alexandre, and P. Dubois, Eur. Polym. J., 43, 4103 (2007).

    Article  CAS  Google Scholar 

  27. M. Ju, F. Gong, S. Cheng, and Y. Gao, Int. J. Polym. Sci., 2011, 1 (2011).

    Article  CAS  Google Scholar 

  28. J. Dai, H. Bai, Z. Liu, L. Chen, Q. Zhang, and Q. Fu, RSC Adv., 6, 17008 (2016).

    Article  CAS  Google Scholar 

  29. X. Lu, L. Tang, L. Wang, J. Zhao, D. Li, Z. Wu, and P. Xiao, Polym. Test., 54, 90 (2016).

    Article  CAS  Google Scholar 

  30. R. Ouhib, B. Renault, H. Mouaziz, C. Nouvel, E. Dellacherie, and J.-L. Six, Carbohydr. Polym., 77, 32 (2009).

    Article  CAS  Google Scholar 

  31. K. W. Kim and S. I. Woo, Macromol. Chem. Phys., 203, 2245 (2002).

    Article  CAS  Google Scholar 

  32. S. I. Moon, C. W. Lee, and I. Taniguchi, Polymer, 42, 5059 (2001).

    Article  CAS  Google Scholar 

  33. C. M. Lee, H. S. Kim, and J. S. Yoon, J. Appl. Polym. Sci., 95, 1116 (2005).

    Article  CAS  Google Scholar 

  34. Y.-P. Song, D.-Y. Wang, X.-L. Wang, L. Lin, and Y.-Z. Wang, Polym. Adv. Technol., 22, 2295 (2011).

    Article  CAS  Google Scholar 

  35. C.-H. Ho, C.-H. Wang, C.-I. Lin, and Y.-D. Lee, Polymer, 49, 3902 (2008).

    Article  CAS  Google Scholar 

  36. Y.-M. Corre, A. Maazouz, J. Reignier, and J. Duchet, Polym. Eng. Sci., 54, 616 (2014).

    Article  CAS  Google Scholar 

  37. R. Zhang, K. Huang, S. Hu, Q. Liu, X. Zhao, and Y. Liu, Polym. Test., 63, 38 (2017).

    Article  CAS  Google Scholar 

  38. I. Moura, R. Nogueira, V. Bounor-Legare, and A. V. Machado, Mater. Chem. Phys., 134, 103 (2012).

    Article  CAS  Google Scholar 

  39. J. Tuominen and J. V. Seppala, Macromolecules, 33, 3530 (2000).

    Article  CAS  Google Scholar 

  40. S. Liu, C. Li, J. Zhao, Z. Zhang, and W. Yang, Polymer, 52, 6046 (2011).

    Article  CAS  Google Scholar 

  41. S. Ozlem, B. Iskin, G. Yilmaz, M. Kukut, J. Hacaloglu, and Y. Yagci, Eur. Polym. J., 48, 1755 (2012).

    Article  CAS  Google Scholar 

  42. N. J. Sijbrandi, A. J. Kimenai, E. P. C. Mes, R. Broos, G. Bar, M. Rosenthal, Y. Odarchenko, D. A. Ivanov, P. J. Dijkstra, and J. Feijen, Macromolecules, 45, 3948 (2012).

    Article  CAS  Google Scholar 

  43. Z. Ge, D. Wang, and Y. Zhou, Macromolecules, 42, 2903 (2009).

    Article  CAS  Google Scholar 

  44. T. Yokohara and M. Yamaguchi, Eur. Polym. J., 44, 677 (2008).

    Article  CAS  Google Scholar 

  45. L. Liu, J. Yu, L. Cheng, and X. Yang, Polym. Degrad. Stab., 94, 90 (2009).

    Article  CAS  Google Scholar 

  46. S.-L. Li, F. Wu, Y. Yang, Y.-Z. Wang, and J.-B. Zeng, Polym. Adv. Technol., 26, 1003 (2015).

    Article  CAS  Google Scholar 

  47. J. Zhou, Z. Jiang, Z. Wang, J. Zhang, J. Li, Y. Li, J. Zhang, P. Chen, and Q. Gu, RSC Adv., 3, 18464 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zou.

Additional information

Acknowledgments: This work was financially supported by the Opening Project of Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province (HPK201605), Huaian Science and Technology project (HAS2015002), the Open Project Fund for Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical Industry (No. 2065031701) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Qi, Y., Su, L. et al. Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2′-Bis(2-oxazoline) Chain Extending. Macromol. Res. 26, 1212–1218 (2018). https://doi.org/10.1007/s13233-019-7018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7018-3

Keywords

Navigation