Skip to main content

Advertisement

Log in

Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer’s disease or Parkinson’s disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and l-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ (2005) Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 48:1590–1603. doi:10.1007/s00125-005-1810-7

    Article  CAS  PubMed  Google Scholar 

  • Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12:332–343

    Article  CAS  PubMed  Google Scholar 

  • Barzilay JI, Jablonski KA, Fonseca V, Shoelson SE, Goldfine AB, Strauch C, Monnier VM (2014) The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes. Diabetes Care 37:1083–1091. doi:10.2337/dc13-1527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS (1999) Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48:198–202

    Article  CAS  PubMed  Google Scholar 

  • Beisswenger PJ, Drummond KS, Nelson RG, Howell SK, Szwergold BS, Mauer M (2005) Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes 54:3274–3281

    Article  CAS  PubMed  Google Scholar 

  • Beisswenger PJ, Howell SK, Russell GB, Miller ME, Rich SS, Mauer M (2013) Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care 36:3234–3239. doi:10.2337/dc12-2689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beisswenger PJ, Howell SK, Russell G, Miller ME, Rich SS, Mauer M (2014) Detection of diabetic nephropathy from advanced glycation endproducts (AGEs) differs in plasma and urine, and is dependent on the method of preparation. Amino Acids 46:311–319. doi:10.1007/s00726-013-1533-x

    Article  CAS  PubMed  Google Scholar 

  • Bélanger M, Yang J, Petit JM, Laroche T, Magistretti PJ, Allaman I (2011) Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci 31:18338–18352. doi:10.1523/JNEUROSCI.1249-11.2011

    Article  PubMed  Google Scholar 

  • Bigl K, Gaunitz F, Schmitt A, Rothemund S, Schliebs R, Münch G, Arendt T (2008) Cytotoxicity of advanced glycation endproducts in human micro- and astroglial cell lines depends on the degree of protein glycation. J Neural Transm 115:1545–1556. doi:10.1007/s00702-008-0126-4

    Article  CAS  PubMed  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. doi:10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  • Buyukuysal RL (2005) Protein S100B release from rat brain slices during and after ischemia: comparison with lactate dehydrogenase leakage. Neurochem Int 47:580–588. doi:10.1016/j.neuint.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  • Coleman E, Judd R, Hoe L, Dennis J, Posner P (2004) Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Glia 48:166–178. doi:10.1002/glia.20068

    Article  PubMed  Google Scholar 

  • De Arriba SG, Krügel U, Regenthal R, Vissiennon Z, Verdaguer E, Lewerenz A, García-Jordá E, Pallas M, Camins A, Münch G, Nieber K, Allgaier C (2006) Carbonyl stress and NMDA receptor activation contribute to methylglyoxal neurotoxicity. Free Radic Biol Med 40:779–790. doi:10.1016/j.freeradbiomed.2005.09.038

    Article  PubMed  Google Scholar 

  • Di Loreto S, Zimmitti V, Sebastiani P, Cervelli C, Falone S, Amicarelli F (2008) Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons. Int J Biochem Cell Biol 40:245–257. doi:10.1016/j.biocel.2007.07.019

    Article  PubMed  Google Scholar 

  • Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022. doi:10.1016/j.bbamcr.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  • Gardoni F, Kamal A, Bellone C, Biessels GJ, Ramakers GM, Cattabeni F, Gispen WH, di Luca M (2002) Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats. J Neurochem 80:438–447. doi:10.1046/j.0022-3042.2001.00713.x

    Article  CAS  PubMed  Google Scholar 

  • Hamilton J, Cummings E, Zdravkovic V, Finegood D, Daneman D (2003) Metformin as an adjunct therapy in adolescents with type 1 diabetes and insulin resistance: a randomized controlled trial. Diabetes Care 26:138–143

    Article  CAS  PubMed  Google Scholar 

  • Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210. doi:10.1016/0022-1759(89)90397-9

    Article  CAS  PubMed  Google Scholar 

  • Hanssen NM, Engelen L, Ferreira I, Scheijen JL, Huijberts MS, van Greevenbroek MM, van der Kallen CJ, Dekker JM, Nijpels G, Stehouwer CD, Schalkwijk CG (2013) Plasma levels of advanced glycation endproducts Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, and pentosidine are not independently associated with cardiovascular disease in individuals with or without type 2 diabetes: the Hoorn and CODAM studies. J Clin Endocrinol Metab 98:E1369–E1373. doi:10.1210/jc.2013-1068

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743. doi:10.1016/j.tins.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  • Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ (2010) Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia 53:1506–1516. doi:10.1007/s00125-010-1722-z

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi M, Shibata N, Horiuchi S, Kobayashi M (2005) Glyoxal inactivates glutamate transporter-1 in cultured rat astrocytes. Neuropathology 25:27–36. doi:10.1111/j.1440-1789.2004.00579.x

    Article  PubMed  Google Scholar 

  • Khan AS, McLoughney CR, Ahmed AB (2006) The effect of metformin on blood glucose control in overweight patients with Type 1 diabetes. Diabetes Med 23:1079–1084

    Article  CAS  Google Scholar 

  • Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, Basso E, Seraglia R, Traldi P (2003) Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 41:1166–1173. doi:10.1515/CCLM.2003.180

    Article  CAS  PubMed  Google Scholar 

  • Lapolla A, Reitano R, Seraglia R, Sartore G, Ragazzi E, Traldi P (2005) Evaluation of advanced glycation end products and carbonyl compounds in patients with different conditions of oxidative stress. Mol Nutr Food Res 49:685–690. doi:10.1002/mnfr.200400093

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Seo IA, Suh DJ, Lee HJ, Park HT (2009) A novel mechanism of methylglyoxal cytotoxicity in neuroglial cells. J Neurochem 108:273–284. doi:10.1111/j.1471-4159.2008.05764.x

    Article  CAS  PubMed  Google Scholar 

  • Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C, Goncalves CA (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99. doi:10.1016/j.jneumeth.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  • Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions: a kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305

    CAS  PubMed  Google Scholar 

  • Lund SS, Tarnow L, Astrup AS, Hovind P, Jacobsen PK, Alibegovic AC, Parving I, Pietraszek L, Frandsen M, Rossing P, Parving HH, Vaag AA (2008) Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study. PLoS One 3:e3363. doi:10.1371/journal.pone.0003363

    Article  PubMed Central  PubMed  Google Scholar 

  • Minet R, Villie F, Marcollet M, Meynial-Denis D, Cynober L (1997) Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clin Chim Acta 268:121–132. doi:10.1016/S0009-8981(97)00173-3

    Article  CAS  PubMed  Google Scholar 

  • Nardin P, Tramontina F, Leite MC, Tramontina AC, Quincozes-Santos A, de Almeida LM, Battastini AM, Gottfried C, Gonçalves CA (2007) S100B content and secretion decrease in astrocytes cultured in high-glucose medium. Neurochem Int 50:774–782. doi:10.1016/j.neuint.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  • Nardin P, Tortorelli L, Quincozes-Santos A, de Almeida LM, Leite MC, Thomazi AP, Gottfried C, Wofchuk ST, Donato R, Gonçalves CA (2009) S100B secretion in acute brain slices: modulation by extracellular levels of Ca(2+) and K (+). Neurochem Res 34:1603–1611. doi:10.1007/s11064-009-9949-0

    Article  CAS  PubMed  Google Scholar 

  • Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429. doi:10.1016/j.redox.2013.12.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  • Phillips SA, Mirrlees D, Thornalley PJ (1993) Modification of the glyoxalase system in streptozotocin-induced diabetic rats: effect of the aldose reductase inhibitor Statil. Biochem Pharmacol 46:805–811. doi:10.1016/0006-2952(93)90488-I

    Article  CAS  PubMed  Google Scholar 

  • Quincozes-Santos A, Bobermin LD, Tonial RP, Bambini-Junior V, Riesgo R, Gottfried C (2010) Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions. Eur Arch Psychiatry Clin Neurosci 260:475–481. doi:10.1007/s00406-009-0095-0

    Article  PubMed  Google Scholar 

  • Quincozes-Santos A, Bobermin LD, Tramontina AC, Wartchow KM, Tagliari B, Souza DO, Wyse AT, Gonçalves CA (2014) Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol. Toxicol In Vitro 28:544–551. doi:10.1016/j.tiv.2013.12.021

    Article  CAS  PubMed  Google Scholar 

  • Rabbani N, Thornalley PJ (2014) The Critical Role of Methylglyoxal and Glyoxalase 1 in Diabetic Nephropathy. Diabetes 63:50–52. doi:10.2337/db13-1606

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Navakkode S (2005) Frey JU (2005) Protein synthesis dependent long-term functional plasticity: methods and techniques. Curr Opin Neurobiol 15:607–613. doi:10.1016/j.conb.08.009

    Article  CAS  PubMed  Google Scholar 

  • Steiner J, Bogerts B, Schroeter ML, Bernstein HG (2011) S100B protein in neurodegenerative disorders. Clin Chem Lab Med 49:409–424. doi:10.1515/CCLM.2011.083

    Article  CAS  PubMed  Google Scholar 

  • Strachan MW, Reynolds RM, Marioni RE, Price JF (2011) Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 7:108–114. doi:10.1038/nrendo.2010.228

    Article  CAS  PubMed  Google Scholar 

  • Takano T, He W, Han X, Wang F, Xu Q, Wang X, Oberheim Bush NA, Cruz N, Dienel GA, Nedergaard M (2014) Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia 62:78–95. doi:10.1002/glia.22588

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomazi AP, Godinho GF, Rodrigues JM, Schwalm FD, Frizzo ME, Moriguchi E, Souza DO, Wofchuk ST (2004) Ontogenetic profile of glutamate uptake in brain structures slices from rats: sensitivity to guanosine. Mech Ageing Dev 125:475–481. doi:10.1016/j.mad.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Aspects Med 14:287–371. doi:10.1016/0098-2997(93)90002-U

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ (2005) Dicarbonyl intermediates in the maillard reaction. Ann N Y Acad Sci 1043:111–117. doi:10.1196/annals.1333.014

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Rabbani N (2011) Protein damage in diabetes and uremia—identifying hotspots of proteome damage where minimal modification is amplified to marked pathophysiological effect. Free Radic Res 45:89–100. doi:10.3109/10715762.2010.534162

    Article  CAS  PubMed  Google Scholar 

  • Tramontina F, Leite MC, Gonçalves D, Tramontina AC, Souza DF, Frizzo JK, Nardin P, Gottfried C, Wofchuk ST, Gonçalves CA (2006) High glutamate decreases S100B secretion by a mechanism dependent on the glutamate transporter. Neurochem Res 31:815–820. doi:10.1007/s11064-006-9085-z

    Article  CAS  PubMed  Google Scholar 

  • Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19:328–334. doi:10.1016/S0165-6147(98)01230-9

    Article  CAS  PubMed  Google Scholar 

  • Vlassara H (2001) The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 17:436–443. doi:10.1002/dmrr.233

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640. doi:10.1038/nrn1722

    Article  CAS  PubMed  Google Scholar 

  • Wong A, Lüth HJ, Arendt T, Münch G (2001) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920:32–40. doi:10.1016/S0006-8993(01)02872-4

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Park Y, Huang X, Hollenbeck A, Blair A, Schatzkin A, Chen H (2011) Diabetes and risk of Parkinson’s disease. Diabetes Care 34:910–915. doi:10.2337/dc10-1922

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Financiadora de Estudos e Projetos (FINEP)—Instituto Brasileiro de Neurociências (IBN Net) 01.06.0842-00, Federal University of Rio Grande do Sul (UFRGS) and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCTEN/CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos-Alberto Gonçalves.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed, and all procedures performed in this study were in accordance with the ethical standards of the institution at which the studies were conducted (Institutional Animal Care and Use Committee (IACUC), approval number 28035).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Y. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, F., Battú, C.E., Dutra, M.F. et al. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation. Amino Acids 48, 375–385 (2016). https://doi.org/10.1007/s00726-015-2091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2091-1

Keywords

Navigation