Skip to main content

Advertisement

Log in

Peripheral Levels of AGEs and Astrocyte Alterations in the Hippocampus of STZ-Diabetic Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diabetic patients and streptozotocin (STZ)-induced diabetes mellitus (DM) models exhibit signals of brain dysfunction, evidenced by neuronal damage and memory impairment. Astrocytes surrounding capillaries and synapses modulate many brain activities that are connected to neuronal function, such as nutrient flux and glutamatergic neurotransmission. As such, cognitive changes observed in diabetic patients and experimental models could be related to astroglial alterations. Herein, we investigate specific astrocyte changes in the rat hippocampus in a model of DM induced by STZ, particularly looking at glial fibrillary acidic protein (GFAP), S100B protein and glutamate uptake, as well as the content of advanced glycated end products (AGEs) in serum and cerebrospinal fluid (CSF), as a consequence of elevated hyperglycemia and the content of receptor for AGEs in the hippocampus. We found clear peripheral alterations, including hyperglycemia, low levels of proinsulin C-peptide, elevated levels of AGEs in serum and CSF, as well as an increase in RAGE in hippocampal tissue. We found specific astroglial abnormalities in this brain region, such as reduced S100B content, reduced glutamate uptake and increased S100B secretion, which were not accompanied by changes in GFAP. We also observed an increase in the glucose transporter, GLUT-1. All these changes may result from RAGE-induced inflammation; these astroglial alterations together with the reduced content of GluN1, a subunit of the NMDA receptor, in the hippocampus may be associated with the impairment of glutamatergic communication in diabetic rats. These findings contribute to understanding the cognitive deficits in diabetic patients and experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yi SS, Hwang IK, Kim DW, Shin JH, Nam SM, Choi JH, Lee CH, Won MH, Seong JK, Yoon YS (2011) The chronological characteristics of SOD1 activity and inflammatory response in the hippocampi of STZ-induced type 1 diabetic rats. Neurochem Res 36(1):117–128. doi:10.1007/s11064-010-0280-6

    Article  CAS  PubMed  Google Scholar 

  2. Kade IJ, Rocha JB (2013) Gallic acid modulates cerebral oxidative stress conditions and activities of enzyme-dependent signaling systems in streptozotocin-treated rats. Neurochem Res 38(4):761–771. doi:10.1007/s11064-013-0975-6

    Article  CAS  PubMed  Google Scholar 

  3. Gandhi RA, Marques JL, Selvarajah D, Emery CJ, Tesfaye S (2010) Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care 33(7):1585–1590. doi:10.2337/dc09-2314

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu J, Yan LJ (2015) Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic beta cell glucotoxicity. Diabetes Metab Syndr Obes 8:181–188. doi:10.2147/DMSO.S82272

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vlassara H, Uribarri J (2014) Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr Diab Rep 14(1):453. doi:10.1007/s11892-013-0453-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I (2013) A histological and functional study on hippocampal formation of normal and diabetic rats. F1000Res 2:151. doi:10.12688/f1000research.2-151.v1

    PubMed  PubMed Central  Google Scholar 

  7. Lebed YV, Orlovsky MA, Nikonenko AG, Ushakova GA, Skibo GG (2008) Early reaction of astroglial cells in rat hippocampus to streptozotocin-induced diabetes. Neurosci Lett 444(2):181–185. doi:10.1016/j.neulet.2008.07.094

    Article  CAS  PubMed  Google Scholar 

  8. Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E (2009) The use of animal models in the study of diabetes mellitus. In vivo 23(2):245–258

    CAS  PubMed  Google Scholar 

  9. Bolzan AD, Bianchi MS (2002) Genotoxicity of streptozotocin. Mutat Res 512(2–3):121–134

    Article  CAS  PubMed  Google Scholar 

  10. Nardin PT, Sesterheim P, Rodrigues L, Biasibetti R, Gonçalves CA (2014) Cognitive impairment induced by streptozotocin: an experimental link between diabetes and alzheimer’s disease. In: Gauthier EL (ed) Streptozotocin: uses, mechanism of action and side effects chapters books. Nova Science Publishers, Porto Alegre Brazil, pp 37–60

    Google Scholar 

  11. Jing L, Mai L, Zhang JZ, Wang JG, Chang Y, Dong JD, Guo FY, Li PA (2013) Diabetes inhibits cerebral ischemia-induced astrocyte activation—an observation in the cingulate cortex. Int J Biol Sci 9(9):980–988. doi:10.7150/ijbs.7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang T, Liu X, Li Q, Wang J, Jia W, Sun X (2010) Exacerbation of ischemia-induced amyloid-beta generation by diabetes is associated with autophagy activation in mice brain. Neurosci Lett 479(3):215–220. doi:10.1016/j.neulet.2010.05.064

    Article  CAS  PubMed  Google Scholar 

  13. Mao XY, Cao DF, Li X, Yin JY, Wang ZB, Zhang Y, Mao CX, Zhou HH, Liu ZQ (2014) Huperzine A ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Int J Mol Sci 15(5):7667–7683. doi:10.3390/ijms15057667

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E (2010) Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp Neurol 223(2):422–431. doi:10.1016/j.expneurol.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  15. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1):64–74. doi:10.1016/S1474-4422(05)70284-2

    Article  PubMed  Google Scholar 

  16. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121(1):4–27. doi:10.1111/j.1471-4159.2012.07664.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pellerin L (2005) How astrocytes feed hungry neurons. Mol Neurobiol 32(1):59–72. doi:10.1385/MN:32:1:059

    Article  CAS  PubMed  Google Scholar 

  18. Jurcovicova J (2014) Glucose transport in brain—effect of inflammation. Endocrine Regul 48(1):35–48

    Article  CAS  Google Scholar 

  19. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098. doi:10.1152/physrev.00041.2013

    Article  PubMed  Google Scholar 

  20. Goncalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41(10–11):755–763. doi:10.1016/j.clinbiochem.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Ziegler DR, Innocente CE, Leal RB, Rodnight R, Goncalves CA (1998) The S100B protein inhibits phosphorylation of GFAP and vimentin in a cytoskeletal fraction from immature rat hippocampus. Neurochem Res 23(10):1259–1263

    Article  CAS  PubMed  Google Scholar 

  22. Leal RB, Frizzo JK, Tramontina F, Fieuw-Makaroff S, Bobrovskaya L, Dunkley PR, Goncalves CA (2004) S100B protein stimulates calcineurin activity. NeuroReport 15(2):317–320

    Article  CAS  PubMed  Google Scholar 

  23. Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ, Group Ac-DAGS (2008) Translating the A1C assay into estimated average glucose values. Diabetes Care 31(8):1473–1478. doi:10.2337/dc08-0545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793(6):1008–1022. doi:10.1016/j.bbamcr.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  25. Kleindienst A, Hesse F, Bullock MR, Buchfelder M (2007) The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res 161:317–325. doi:10.1016/S0079-6123(06)61022-4

    Article  CAS  PubMed  Google Scholar 

  26. Lin CH, Huang YJ, Lin CJ, Lane HY, Tsai GE (2014) NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer’s disease. Curr Pharm Des 20(32):5169–5179

    Article  CAS  PubMed  Google Scholar 

  27. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1–3):6–18. doi:10.1016/j.ejphar.2012.10.032

    Article  CAS  PubMed  Google Scholar 

  28. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  29. Son H, Jung S, Kim JY, Goo YM, Cho KM, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ (2015) Type 1 diabetes alters astrocytic properties related with neurotransmitter supply, causing abnormal neuronal activities. Brain Res 1602:32–43. doi:10.1016/j.brainres.2014.12.055

    Article  CAS  PubMed  Google Scholar 

  30. Nagayach A, Patro N, Patro I (2014) Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis 29(3):747–761. doi:10.1007/s11011-014-9562-z

    Article  CAS  PubMed  Google Scholar 

  31. Coleman E, Judd R, Hoe L, Dennis J, Posner P (2004) Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Glia 48(2):166–178. doi:10.1002/glia.20068

    Article  PubMed  Google Scholar 

  32. Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF (2002) Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res 957(2):345–353

    Article  CAS  PubMed  Google Scholar 

  33. Flood JF, Mooradian AD, Morley JE (1990) Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes 39(11):1391–1398

    Article  CAS  PubMed  Google Scholar 

  34. Duarte JM, Agostinho PM, Carvalho RA, Cunha RA (2012) Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS ONE 7(4):e21899. doi:10.1371/journal.pone.0021899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):1–14. doi:10.4196/kjpp.2014.18.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429. doi:10.1016/j.redox.2013.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen YJ, Chan DC, Chiang CK, Wang CC, Yang TH, Lan KC, Chao SC, Tsai KS, Yang RS, Liu SH (2015) Advanced glycation end-products induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-kappaB pathway activation. J Orthop Res. doi:10.1002/jor.23083

    Google Scholar 

  38. Yamagishi S (2011) Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol 46(4):217–224. doi:10.1016/j.exger.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Takeuchi M, Yamagishi S (2008) Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 14(10):973–978

    Article  CAS  PubMed  Google Scholar 

  40. Huang CC, Chung CM, Leu HB, Lin LY, Chiu CC, Hsu CY, Chiang CH, Huang PH, Chen TJ, Lin SJ, Chen JW, Chan WL (2014) Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study. PLoS ONE 9(1):e87095. doi:10.1371/journal.pone.0087095

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ouwens DM, van Duinkerken E, Schoonenboom SN, Herzfeld de Wiza D, Klein M, van Golen L, Pouwels PJ, Barkhof F, Moll AC, Snoek FJ, Teunissen CE, Scheltens P, Diamant M (2014) Cerebrospinal fluid levels of Alzheimer’s disease biomarkers in middle-aged patients with type 1 diabetes. Diabetologia 57(10):2208–2214. doi:10.1007/s00125-014-3333-6

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21. doi:10.1016/j.diabres.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  43. Revsin Y, Saravia F, Roig P, Lima A, de Kloet ER, Homo-Delarche F, De Nicola AF (2005) Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 1:22–31. doi:10.1016/j.brainres.2004.12.032

    Article  Google Scholar 

  44. Baydas G, Nedzvetskii VS, Tuzcu M, Yasar A, Kirichenko SV (2003) Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E. Eur J Pharmacol 462(1–3):67–71

    Article  CAS  PubMed  Google Scholar 

  45. Saravia FE, Beauquis J, Revsin Y, Homo-Delarche F, de Kloet ER, De Nicola AF (2006) Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment. Cell Mol Neurobiol 26(4–6):943–957. doi:10.1007/s10571-006-9096-y

    CAS  PubMed  Google Scholar 

  46. Coleman ES, Dennis JC, Braden TD, Judd RL, Posner P (2010) Insulin treatment prevents diabetes-induced alterations in astrocyte glutamate uptake and GFAP content in rats at 4 and 8 weeks of diabetes duration. Brain Res 1306:131–141. doi:10.1016/j.brainres.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  47. de Senna PN, Ilha J, Baptista PP, do Nascimento PS, Leite MC, Paim MF, Goncalves CA, Achaval M, Xavier LL (2011) Effects of physical exercise on spatial memory and astroglial alterations in the hippocampus of diabetic rats. Metab Brain Dis 26(4):269–279. doi:10.1007/s11011-011-9262-x

    Article  PubMed  Google Scholar 

  48. Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89(5):1092–1100. doi:10.1111/j.1471-4159.2004.02420.x

    Article  CAS  PubMed  Google Scholar 

  49. Collino M, Aragno M, Castiglia S, Tomasinelli C, Thiemermann C, Boccuzzi G, Fantozzi R (2009) Insulin reduces cerebral ischemia/reperfusion injury in the hippocampus of diabetic rats: a role for glycogen synthase kinase-3beta. Diabetes 58(1):235–242. doi:10.2337/db08-0691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632. doi:10.1002/jemt.10303

    Article  CAS  PubMed  Google Scholar 

  51. Goncalves CA, Leite MC, Guerra MC (2010) Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol 2010:790431. doi:10.1155/2010/790431

    PubMed  PubMed Central  Google Scholar 

  52. Steiner J, Schiltz K, Walter M, Wunderlich MT, Keilhoff G, Brisch R, Bielau H, Bernstein HG, Bogerts B, Schroeter ML, Westphal S (2010) S100B serum levels are closely correlated with body mass index: an important caveat in neuropsychiatric research. Psychoneuroendocrinology 35(2):321–324. doi:10.1016/j.psyneuen.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  53. Celikbilek A, Akyol L, Sabah S, Tanik N, Adam M, Celikbilek M, Korkmaz M, Yilmaz N (2014) S100B as a glial cell marker in diabetic peripheral neuropathy. Neurosci Lett 558:53–57. doi:10.1016/j.neulet.2013.10.067

    Article  CAS  PubMed  Google Scholar 

  54. Hovsepyan MR, Haas MJ, Boyajyan AS, Guevorkyan AA, Mamikonyan AA, Myers SE, Mooradian AD (2004) Astrocytic and neuronal biochemical markers in the sera of subjects with diabetes mellitus. Neurosci Lett 369(3):224–227. doi:10.1016/j.neulet.2004.07.071

    Article  CAS  PubMed  Google Scholar 

  55. Berbaum K, Shanmugam K, Stuchbury G, Wiede F, Korner H, Munch G (2008) Induction of novel cytokines and chemokines by advanced glycation endproducts determined with a cytometric bead array. Cytokine 41(3):198–203. doi:10.1016/j.cyto.2007.11.012

    Article  CAS  PubMed  Google Scholar 

  56. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. doi:10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  57. Hansen F, Battu CE, Dutra MF, Galland F, Lirio F, Broetto N, Nardin P, Goncalves CA (2015) Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation. Amino Acids. doi:10.1007/s00726-015-2091-1

    Google Scholar 

  58. Gascon S, Deogracias R, Sobrado M, Roda JM, Renart J, Rodriguez-Pena A, Diaz-Guerra M (2005) Transcription of the NR1 subunit of the N-methyl-D-aspartate receptor is down-regulated by excitotoxic stimulation and cerebral ischemia. J Biol Chem 280(41):35018–35027. doi:10.1074/jbc.M504108200

    Article  CAS  PubMed  Google Scholar 

  59. de Souza DF, Leite MC, Quincozes-Santos A, Nardin P, Tortorelli LS, Rigo MM, Gottfried C, Leal RB, Goncalves CA (2009) S100B secretion is stimulated by IL-1beta in glial cultures and hippocampal slices of rats: likely involvement of MAPK pathway. J Neuroimmunol 206(1–2):52–57. doi:10.1016/j.jneuroim.2008.10.012

    Article  PubMed  Google Scholar 

  60. Nardin P, Tramontina F, Leite MC, Tramontina AC, Quincozes-Santos A, de Almeida LM, Battastini AM, Gottfried C, Goncalves CA (2007) S100B content and secretion decrease in astrocytes cultured in high-glucose medium. Neurochem Int 50(5):774–782. doi:10.1016/j.neuint.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  61. Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR (1999) Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem 72(1):238–247

    Article  CAS  PubMed  Google Scholar 

  62. Prasad S, Sajja RK, Park JH, Naik P, Kaisar MA, Cucullo L (2015) Impact of cigarette smoke extract and hyperglycemic conditions on blood-brain barrier endothelial cells. Fluids Barriers CNS 12(1):18. doi:10.1186/s12987-015-0014-x

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang WT, Lee P, Yeh HW, Smirnova IV, Choi IY (2012) Effects of acute and chronic hyperglycemia on the neurochemical profiles in the rat brain with streptozotocin-induced diabetes detected using in vivo (1)H MR spectroscopy at 9.4 T. J Neurochem 121(3):407–417. doi:10.1111/j.1471-4159.2012.07698.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23(11):542–549

    Article  CAS  PubMed  Google Scholar 

  65. Rondon LJ, Privat AM, Daulhac L, Davin N, Mazur A, Fialip J, Eschalier A, Courteix C (2010) Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain. J Physiol 588(Pt 21):4205–4215. doi:10.1113/jphysiol.2010.197004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Di Luca M, Ruts L, Gardoni F, Cattabeni F, Biessels GJ, Gispen WH (1999) NMDA receptor subunits are modified transcriptionally and post-translationally in the brain of streptozotocin-diabetic rats. Diabetologia 42(6):693–701. doi:10.1007/s001250051217

    Article  PubMed  Google Scholar 

  67. Netto CB, Conte S, Leite MC, Pires C, Martins TL, Vidal P, Benfato MS, Giugliani R, Goncalves CA (2006) Serum S100B protein is increased in fasting rats. Arch Med Res 37(5):683–686. doi:10.1016/j.arcmed.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  68. Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T, Ueda S, Horiuchi S (1996) N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35(24):8075–8083. doi:10.1021/bi9530550

    Article  CAS  PubMed  Google Scholar 

  69. Nardin P, Tortorelli L, Quincozes-Santos A, de Almeida LM, Leite MC, Thomazi AP, Gottfried C, Wofchuk ST, Donato R, Goncalves CA (2009) S100B secretion in acute brain slices: modulation by extracellular levels of Ca(2+) and K (+). Neurochem Res 34(9):1603–1611. doi:10.1007/s11064-009-9949-0

    Article  CAS  PubMed  Google Scholar 

  70. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zanotto C, Abib RT, Batassini C, Tortorelli LS, Biasibetti R, Rodrigues L, Nardin P, Hansen F, Gottfried C, Leite MC, Goncalves CA (2013) Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats. Brain Res 1491:14–22. doi:10.1016/j.brainres.2012.10.065

    Article  CAS  PubMed  Google Scholar 

  72. Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C, Goncalves CA (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169(1):93–99. doi:10.1016/j.jneumeth.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  73. Tramontina F, Leite MC, Cereser K, de Souza DF, Tramontina AC, Nardin P, Andreazza AC, Gottfried C, Kapczinski F, Goncalves CA (2007) Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods 162(1–2):282–286. doi:10.1016/j.jneumeth.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  74. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Nardin.

Ethics declarations

Conflict of interest

No conflict of interest, financial or otherwise, are declared by the authors.

Additional information

Patrícia Nardin and Caroline Zanotto contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nardin, P., Zanotto, C., Hansen, F. et al. Peripheral Levels of AGEs and Astrocyte Alterations in the Hippocampus of STZ-Diabetic Rats. Neurochem Res 41, 2006–2016 (2016). https://doi.org/10.1007/s11064-016-1912-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1912-2

Keywords

Navigation