Skip to main content
Log in

Cistrans peptide variations in structurally similar proteins

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The presence of energetically less favourable cis peptides in protein structures has been observed to be strongly associated with its structural integrity and function. Inter-conversion between the cis and trans conformations also has an important role in the folding process. In this study, we analyse the extent of conservation of cis peptides among similar folds. We look at both the amino acid preferences and local structural changes associated with such variations. Nearly 34% of the Xaa-Proline cis bonds are not conserved in structural relatives; Proline also has a high tendency to get replaced by another amino acid in the trans conformer. At both positions bounding the peptide bond, Glycine has a higher tendency to lose the cis conformation. The cis conformation of more than 30% of β turns of type VIb and IV are not found to be conserved in similar structures. A different view using Protein Block-based description of backbone conformation, suggests that many of the local conformational changes are highly different from the general local structural variations observed among structurally similar proteins. Changes between cis and trans conformations are found to be associated with the evolution of new functions facilitated by local structural changes. This is most frequent in enzymes where new catalytic activity emerges with local changes in the active site. Cistrans changes are also seen to facilitate inter-domain and inter-protein interactions. As in the case of folding, cistrans conversions have been used as an important driving factor in evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreotti AH (2003) Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42(32):9515–9524

    Article  PubMed  CAS  Google Scholar 

  • Bannwarth M, Heckmann-Pohl D, Bastian S, Giffhorn F, Schulz GE (2006) Reaction geometry and thermostable variant of pyranose 2-oxidase from the white-rot fungus Peniophora sp. Biochemistry 45(21):6587–6595

    Article  PubMed  CAS  Google Scholar 

  • Bourderioux A, Lefoix M, Gueyrard D, Tatibouet A, Cottaz S, Arzt S, Burmeister WP, Rollin P (2005) The glucosinolate-myrosinase system. New insights into enzyme-substrate interactions by use of simplified inhibitors. Org Biomol Chem 3(10):1872–1879

    Article  PubMed  CAS  Google Scholar 

  • Brandts JF, Halvorson HR, Brennan M (1975) Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis–trans isomerism of proline residues. Biochemistry 14(22):4953–4963

    Article  PubMed  CAS  Google Scholar 

  • Brauer AB, Domingo GJ, Cooke RM, Matthews SJ, Leatherbarrow RJ (2002) A conserved cis peptide bond is necessary for the activity of Bowman–Birk inhibitor protein. Biochemistry 41(34):10608–10615

    Article  PubMed  CAS  Google Scholar 

  • Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B (2000) High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem 275(50):39385–39393

    Article  PubMed  CAS  Google Scholar 

  • Calamini B, Santarsiero BD, Boutin JA, Mesecar AD (2008) Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2. Biochem J 413(1):81–91

    Article  PubMed  CAS  Google Scholar 

  • de Brevern AG (2005) New assessment of a structural alphabet. In Silico Biol 5(3):283–289

    PubMed  Google Scholar 

  • de Brevern AG, Etchebest C, Hazout S (2000) Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 41(3):271–287

    Article  PubMed  Google Scholar 

  • DeLano WLT (2002) The PyMol molecular graphics system. Schrodinger, Delano Scientific LLC, San Carlos

    Google Scholar 

  • Dreveny I, Gruber K, Glieder A, Thompson A, Kratky C (2001) The hydroxynitrile lyase from almond: a lyase that looks like an oxidoreductase. Structure 9(9):803–815

    Article  PubMed  CAS  Google Scholar 

  • Eakin CM, Berman AJ, Miranker AD (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13(3):202–208. doi:10.1038/nsmb1068

    Article  PubMed  CAS  Google Scholar 

  • Eckert B, Martin A, Balbach J, Schmid FX (2005) Prolyl isomerization as a molecular timer in phage infection. Nat Struct Mol Biol 12(7):619–623. doi:10.1038/nsmb946

    Article  PubMed  CAS  Google Scholar 

  • Esposito L, De Simone A, Zagari A, Vitagliano L (2005) Correlation between omega and psi dihedral angles in protein structures. J Mol Biol 347(3):483–487. doi:10.1016/j.jmb.2005.01.065

    Article  PubMed  CAS  Google Scholar 

  • Etchebest C, Benros C, Hazout S, de Brevern AG (2005) A structural alphabet for local protein structures: improved prediction methods. Proteins 59(4):810–827. doi:10.1002/prot.20458

    Article  PubMed  CAS  Google Scholar 

  • Fischer G, Aumuller T (2003) Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 148:105–150. doi:10.1007/s10254-003-0011-3

    Article  PubMed  CAS  Google Scholar 

  • Gelly JC, Joseph AP, Srinivasan N, de Brevern AG (2011) iPBA: a tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Res. doi:10.1093/nar/gkr333

  • Grathwohl C, Wuthrick K (1981) NMR studies of the rates of proline cis–trans isomerization in oligopeptides. Biopolymers 20:2623–2633

    Article  CAS  Google Scholar 

  • Grochulski P, Li Y, Schrag JD, Cygler M (1994) Two conformational states of Candida rugosa lipase. Protein Sci 3(1):82–91. doi:10.1002/pro.5560030111

    Article  PubMed  CAS  Google Scholar 

  • Guan RJ, Xiang Y, He XL, Wang CG, Wang M, Zhang Y, Sundberg EJ, Wang DC (2004) Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins. J Mol Biol 341(5):1189–1204. doi:10.1016/j.jmb.2004.06.067S0022-2836(04)00772-7

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson EG, Thornton JM (1996) PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein Sci 5(2):212–220

    Article  PubMed  CAS  Google Scholar 

  • Jabs A, Weiss MS, Hilgenfeld R (1999) Non-proline cis peptide bonds in proteins. J Mol Biol 286(1):291–304. doi:10.1006/jmbi.1998.2459

    Article  PubMed  CAS  Google Scholar 

  • Jakob RP, Schmid FX (2008) Energetic coupling between native-state prolyl isomerization and conformational protein folding. J Mol Biol 377(5):1560–1575

    Article  PubMed  CAS  Google Scholar 

  • Joseph AP, Agarwal G, Mahajan S, Gelly J-C, Swapna LS, Offmann B, Cadet F, Bornot A, Tyagi M, Valadié H, Schneider B, Cadet F, Srinivasan N, de Brevern AG (2010) A short survey on protein blocks. Biophys Rev 2:137–145

    Article  PubMed  CAS  Google Scholar 

  • Joseph AP, Srinivasan N, de Brevern AG (2011) Improvement of protein structure comparison using a structural alphabet. Biochimie 93(9):1434–1445

    Article  PubMed  CAS  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin

  • Kolstad G, Synstad B, Eijsink VG, van Aalten DM (2002) Structure of the D140N mutant of chitinase B from Serratia marcescens at 1.45 Å resolution. Acta Crystallogr D Biol Crystallogr 58(Pt 2):377–379

    Article  PubMed  CAS  Google Scholar 

  • Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins 64(3):559–574. doi:10.1002/prot.20921

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Finn G, Lee TH, Nicholson LK (2007) Prolyl cis–trans isomerization as a molecular timer. Nat Chem Biol 3(10):619–629. doi:10.1038/nchembio.2007.35

    Article  PubMed  CAS  Google Scholar 

  • Lummis SC, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA (2005) Cis–trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438(7065):248–252. doi:10.1038/nature04130

    Article  PubMed  CAS  Google Scholar 

  • Lupyan D, Leo-Macias A, Ortiz AR (2005) A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics 21(15):3255–3263. doi:10.1093/bioinformatics/bti527

    Article  PubMed  CAS  Google Scholar 

  • MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218(2):397–412

    Article  PubMed  CAS  Google Scholar 

  • Madhusudhan MS, Webb BM, Marti-Renom MA, Eswar N, Sali A (2009) Alignment of multiple protein structures based on sequence and structure features. Protein Eng Des Sel 22(9):569–574

    Article  PubMed  CAS  Google Scholar 

  • Menke M, Berger B, Cowen L (2008) Matt: local flexibility aids protein multiple structure alignment. PLoS Comput Biol 4 (1):e10. doi: 10.1371/journal.pcbi.0040010

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540. doi:10.1006/jmbi.1995.0159

    PubMed  CAS  Google Scholar 

  • Nicholson LK, Lu KP (2007) Prolyl cis–trans isomerization as a molecular timer in Crk signaling. Mol Cell 25(4):483–485. doi:10.1016/j.molcel.2007.02.005

    Article  PubMed  CAS  Google Scholar 

  • Odefey C, Mayr LM, Schmid FX (1995) Non-prolyl cis–trans peptide bond isomerization as a rate-determining step in protein unfolding and refolding. J Mol Biol 245(1):69–78

    PubMed  CAS  Google Scholar 

  • Pal D, Chakrabarti P (1999) Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. J Mol Biol 294(1):271–288. doi:10.1006/jmbi.1999.3217

    Article  PubMed  CAS  Google Scholar 

  • Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, Xia W, Nicholson LK, Lu KP (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440(7083):528–534. doi:10.1038/nature04543

    Article  PubMed  CAS  Google Scholar 

  • Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37(4):205–211

    Article  PubMed  CAS  Google Scholar 

  • Priestle JP (2003) Improved dihedral-angle restraints for protein structure refinement. JACS 36:34–42

    CAS  Google Scholar 

  • Proudfoot M, Sanders SA, Singer A, Zhang R, Brown G, Binkowski A, Xu L, Lukin JA, Murzin AG, Joachimiak A, Arrowsmith CH, Edwards AM, Savchenko AV, Yakunin AF (2008) Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain. J Mol Biol 375(1):301–315

    Article  PubMed  CAS  Google Scholar 

  • Qiu X, Janson CA, Smith WW, Head M, Lonsdale J, Konstantinidis AK (2001) Refined structures of beta-ketoacyl-acyl carrier protein synthase III. J Mol Biol 307(1):341–356

    Article  PubMed  CAS  Google Scholar 

  • Rabiner LR (1989) A tutorial on hidden Markov models and selected application in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  • Ramachandran GN, Mitra AK (1976) An explanation for the rare occurrence of cis peptide units in proteins and polypeptides. J Mol Biol 107(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–438

    Article  PubMed  CAS  Google Scholar 

  • Reimer U, Fischer G (2002) Local structural changes caused by peptidyl-prolyl cis/trans isomerization in the native state of proteins. Biophys Chem 96(2–3):203–212

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Reichman C, Saleh T, Birge RB, Kalodimos CG (2007) Proline cis–trans isomerization controls autoinhibition of a signaling protein. Mol Cell 25(3):413–426. doi:10.1016/j.molcel.2007.01.004

    Article  PubMed  CAS  Google Scholar 

  • Scherer G, Kramer M, Schutkowski M, Reimer U, Fischer G (1998) Barriers to rotation of secondary amide peptide bonds. J Am Chem Soc 120:5568–5574

    Article  CAS  Google Scholar 

  • Schmid FX (1986) Proline isomerization during refolding of ribonuclease A is accelerated by the presence of folding intermediates. FEBS Lett 198(2):217–220

    Article  PubMed  CAS  Google Scholar 

  • Sharpe ML, Gao C, Kendall SL, Baker EN, Lott JS (2008) The structure and unusual protein chemistry of hypoxic response protein 1, a latency antigen and highly expressed member of the DosR regulon in Mycobacterium tuberculosis. J Mol Biol 383(4):822–836

    Article  PubMed  CAS  Google Scholar 

  • Shatsky M, Nussinov R, Wolfson HJ (2004) A method for simultaneous alignment of multiple protein structures. Proteins 56(1):143–156. doi:10.1002/prot.10628

    Article  PubMed  CAS  Google Scholar 

  • Stewart DE, Sarkar A, Wampler JE (1990) Occurrence and role of cis peptide bonds in protein structures. J Mol Biol 214(1):253–260. doi:10.1016/0022-2836(90)90159-J

    Article  PubMed  CAS  Google Scholar 

  • Stoddard BL, Pietrokovski S (1998) Breaking up is hard to do. Nat Struct Biol 5(1):3–5

    Article  PubMed  CAS  Google Scholar 

  • Theisen MJ, Misra I, Saadat D, Campobasso N, Miziorko HM, Harrison DH (2004) 3-hydroxy-3-methylglutaryl-CoA synthase intermediate complex observed in “real-time”. Proc Natl Acad Sci USA 101(47):16442–16447

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tyagi M, de Brevern AG, Srinivasan N, Offmann B (2008) Protein structure mining using a structural alphabet. Proteins 71(2):920–937. doi:10.1002/prot.21776

    Article  PubMed  CAS  Google Scholar 

  • van Aalten DM, Komander D, Synstad B, Gaseidnes S, Peter MG, Eijsink VG (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA 98(16):8979–8984

    Article  PubMed  Google Scholar 

  • Varela PF, Llera AS, Mariuzza RA, Tormo J (2002) Crystal structure of imaginal disc growth factor-2. A member of a new family of growth-promoting glycoproteins from Drosophila melanogaster. J Biol Chem 277(15):13229–13236

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Kappock TJ, Stubbe J, Ealick SE (1998) X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli. Biochemistry 37(45):15647–15662

    Article  PubMed  CAS  Google Scholar 

  • Weiss MS, Jabs A, Hilgenfeld R (1998) Peptide bonds revisited. Nat Struct Biol 5(8):676. doi:10.1038/1368

    Google Scholar 

  • Wu WJ, Raleigh DP (1998) Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions. Biopolymers 45(5):381–394

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Matthews CR (2002) A cis-prolyl peptide bond isomerization dominates the folding of the alpha subunit of Trp synthase, a TIM barrel protein. J Mol Biol 322(1):7–13

    Article  PubMed  CAS  Google Scholar 

  • Wulf G, Finn G, Suizu F, Lu KP (2005) Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 7(5):435–441. doi:10.1038/ncb0505-435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These works were supported by grants from the French Ministry of Research, University of Paris Diderot-Paris 7, French National Institute for Blood Transfusion (INTS), French Institute for Health and Medical Research (INSERM) and Indian Department of Biotechnology. APJ is supported by CEFIPRA/IFCPAR number 3903-E. NS and AdB also acknowledge to CEFIPRA/IFCPAR for collaborative grant (number 3903-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre G. de Brevern.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, A.P., Srinivasan, N. & de Brevern, A.G. Cistrans peptide variations in structurally similar proteins. Amino Acids 43, 1369–1381 (2012). https://doi.org/10.1007/s00726-011-1211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1211-9

Keywords

Navigation