Skip to main content
Log in

A short survey on protein blocks

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Protein structures are classically described in terms of secondary structures. However, even if the regular secondary structures have relevant physical meaning, their recognition based on atomic coordinates has a number of important limitations, such as uncertainties in the assignment of the boundaries of the helical and β-strand regions. In addition, an average of about 50% of all residues are assigned to an irregular state, i.e., the coil. These limitations have led different research teams to focus on abstracting the conformation of the protein backbone in the localized short stretches. To this end, different geometric measures are being used to cluster local stretches in protein structures in a chosen number of states. A prototype representative of the local structures in each cluster is then generally defined. These libraries of local structure prototypes are named "structural alphabets". We have developed a structural alphabet, denoted protein blocks, not only to approximate the protein structure but also to predict them from the sequence. Since its development, we and others have explored numerous new research fields using this structural alphabet. Here, we review some of the most interesting applications of this structural alphabet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal G, Dinesh D, Srinivasan N and de Brevern AG (2010) Characterization of conformational patterns in active and inactive forms of kinases using Protein Blocks approach. In: Maulik U, Bandyopadhyay S, Wang J (eds) Computational Intelligence and Pattern Analysis in Biological Informatics. Wiley, in press

  • Akanuma S, Kigawa T, Yokoyama S (2002) Combinatorial mutagenesis to restrict amino acid usage in an enzyme to a reduced set. Proc Natl Acad Sci USA 99:13549–13553

    Article  CAS  PubMed  Google Scholar 

  • Benros C, Hazout S, de Brevern AG (2002) Extension of a local backbone description using a structural alphabet. "Hybrid Protein Model": a new clustering approach for 3D local structures. In: International Workshop on Bioinformatics ISMIS. Lyon, pp 36-45

  • Benros C, de Brevern AG, Hazout S (2003) Hybrid Protein Model (HPM): A method for building a library of overlapping local structural prototypes. Sensitivity study and improvements of the training. In: IEEE Workshop on Neural Networks for Signal Processing. IEEE Int Work 1:53–72

  • Benros C, de Brevern AG, Etchebest C, Hazout S (2006) Assessing a novel approach for predicting local 3D protein structures from sequence. Proteins 62:865–880

    Article  CAS  PubMed  Google Scholar 

  • Benros C, de Brevern AG, Hazout S (2009) Analyzing the sequence-structure relationship of a library of local structural prototypes. J Theor Biol 256:215–226

    Article  CAS  PubMed  Google Scholar 

  • Bornot A, de Brevern AG (2006) Protein beta-turn assignments. Bioinformation 1:153–155

    Article  PubMed  Google Scholar 

  • Bornot A, Etchebest C, de Brevern AG (2009) A new prediction strategy for long local protein structures using an original description. Proteins 76:570–587

    Article  CAS  PubMed  Google Scholar 

  • Clarke ND (1995) Sequence 'minimization': exploring the sequence landscape with simplified sequences. Curr Opin Biotechnol 6:467–472

    Article  CAS  PubMed  Google Scholar 

  • de Brevern AG (2005) New assessment of a structural alphabet. In Silico Biol 5:283–289

    PubMed  Google Scholar 

  • de Brevern AG (2009) New opportunities to fight against infectious diseases and to identify pertinent drug targets with novel methodologies. Infect Disord Drug Targets 9:246–247

    PubMed  Google Scholar 

  • de Brevern AG, Hazout S (2000) Hybrid Protein Model (HPM): a method to compact protein 3D-structures information and physicochemical properties. IEEE–Computer Soc S1:49–54

    Google Scholar 

  • de Brevern AG, Hazout S (2001) Compacting local protein folds with a "hybrid protein model". Theor Chem Acc 106:36–47

    Google Scholar 

  • de Brevern AG, Hazout S (2003) 'Hybrid protein model' for optimally defining 3D protein structure fragments. Bioinformatics 19:345–353

    Article  PubMed  Google Scholar 

  • de Brevern AG, Etchebest C, Hazout S (2000) Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 41:271–287

    Article  PubMed  Google Scholar 

  • de Brevern AG, Valadie H, Hazout S, Etchebest C (2002) Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship. Protein Sci 11:2871–2886

    Article  PubMed  Google Scholar 

  • de Brevern AG, Benros C, Gautier R, Valadie H, Hazout S, Etchebest C (2004) Local backbone structure prediction of proteins. In Silico Biol 4:381–386

    PubMed  Google Scholar 

  • de Brevern AG, Etchebest C, Benros C, Hazout S (2007) "Pinning strategy": a novel approach for predicting the backbone structure in terms of protein blocks from sequence. J Biosci 32:51–70

    Article  PubMed  Google Scholar 

  • de Brevern AG, Autin L, Colin Y, Bertrand O, Etchebest C (2009) In silico studies on DARC. Infect Disord Drug Targets 9:289–303

    PubMed  Google Scholar 

  • DeLano WLT (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos. Available at: http://www.pymol.org.

  • Dong QW, Wang XL, Lin L (2007) Methods for optimizing the structure alphabet sequences of proteins. Comput Biol Med 37:1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Dudev T, Lim C (2001) Modeling Zn2+-cysteinate complexes in proteins. J Phys Chem 105:10709–10714

    CAS  Google Scholar 

  • Dudev M, Lim C (2007) Discovering structural motifs using a structural alphabet: application to magnesium-binding sites. BMC Bioinform 8:106

    Article  Google Scholar 

  • Etchebest C, Benros C, Hazout S, de Brevern AG (2005) A structural alphabet for local protein structures: improved prediction methods. Proteins 59:810–827

    Article  CAS  PubMed  Google Scholar 

  • Etchebest C, Benros C, Bornot A, Camproux AC, de Brevern AG (2007) A reduced amino acid alphabet for understanding and designing protein adaptation to mutation. Eur Biophys J 36:1059–1069

    Article  CAS  PubMed  Google Scholar 

  • Faure G, Bornot A, de Brevern AG (2008) Protein contacts, inter-residue interactions and side-chain modelling. Biochimie 90:626–639

    Article  CAS  PubMed  Google Scholar 

  • Fetrow JS, Palumbo MJ, Berg G (1997) Patterns, structures, and amino acid frequencies in structural building blocks, a protein secondary structure classification scheme. Proteins 27:249–271

    Article  CAS  PubMed  Google Scholar 

  • Fourrier L, Benros C, de Brevern AG (2004) Use of a structural alphabet for analysis of short loops connecting repetitive structures. BMC Bioinform 5:58

    Article  Google Scholar 

  • Gowri VS, Pandit SB, Karthik PS, Srinivasan N, Balaji S (2003) Integration of related sequences with protein three-dimensional structural families in an updated version of PALI database. Nucleic Acids Res 31:486–488

    Article  CAS  PubMed  Google Scholar 

  • Hazout S (2005) Une nouvelle méthode d’apprentissage: “Self-Learning by Information Share-Out” (SLISO). Sixièmes Journées Ouvertes de Biologie, Informatique et Mathématiques (JOBIM) pour la génomique Lyon, pp 483-488

  • Joseph AP, Bornot A, de Brevern AG (2010) Local Structure Alphabets. In: Rangwala H, Karypis G. (eds), Protein Structure Prediction. Wiley, in press

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262:1680–1685

    Article  CAS  PubMed  Google Scholar 

  • Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51:504–514

    Article  CAS  PubMed  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin Heidelberg New York

  • Kostrewa D, Wyss M, D'Arcy A, van Loon AP (1999) Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2. 4 A resolution. J Mol Biol 288:965–974

    Article  CAS  PubMed  Google Scholar 

  • Ku SY, Hu YJ (2008) Protein structure search and local structure characterization. BMC Bioinform 9:349

    Article  Google Scholar 

  • Lee DC, Cottrill MA, Forsberg CW, Jia Z (2003) Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase. J Biol Chem 278:31412–31418

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zhou C, Liu H (2009) Fragment-based local statistical potentials derived by combining an alphabet of protein local structures with secondary structures and solvent accessibilities. Proteins 74:820–836

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Letellier G, Marin A, Taly JF, de Brevern AG, Gibrat JF (2005) Protein secondary structure assignment revisited: a detailed analysis of different assignment methods. BMC Struct Biol 5:17

    Article  PubMed  Google Scholar 

  • Offmann B, Tyagi M, de Brevern AG (2007) Local protein structures. Curr Bioinf 3:165–202

    Article  Google Scholar 

  • Rabiner LR (1989) A tutorial on hidden Markov models and selected application in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  • Rangwala H, Kauffman C, Karypis G (2009) svmPRAT: SVM-based protein residue annotation toolkit. BMC Bioinf 10:439

    Article  Google Scholar 

  • Sander O, Sommer I, Lengauer T (2006) Local protein structure prediction using discriminative models. BMC Bioinform 7:14

    Article  Google Scholar 

  • Schuchhardt J, Schneider G, Reichelt J, Schomburg D, Wrede P (1996) Local structural motifs of protein backbones are classified by self-organizing neural networks. Protein Eng 9:833–842

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, Deshayes S, Decaffmeyer M, Van Eyck MH, Charloteaux B, Brasseur R (2006) Prediction of peptide structure: how far are we? Proteins 65:889–897

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Gowri VS, Srinivasan N, de Brevern AG, Offmann B (2006a) A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications. Proteins 65:32–39

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Sharma P, Swamy CS, Cadet F, Srinivasan N, de Brevern AG, Offmann B (2006b) Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet. Nucleic Acids Res 34:W119–W123

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, de Brevern AG, Srinivasan N, Offmann B (2008) Protein structure mining using a structural alphabet. Proteins 71:920–937

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Bornot A, Offmann B, de Brevern AG (2009a) Analysis of loop boundaries using different local structure assignment methods. Protein Sci 18:1869–1881

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Bornot A, Offmann B, de Brevern AG (2009b) Protein short loop prediction in terms of a structural alphabet. Comput Biol Chem 33:329–333

    Article  CAS  PubMed  Google Scholar 

  • Unger R, Sussman JL (1993) The importance of short structural motifs in protein structure analysis. J Comput Aided Mol Des 7:457–472

    Article  CAS  PubMed  Google Scholar 

  • Unger R, Harel D, Wherland S, Sussman JL (1989) A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins 5:355–373

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Chen YC and Lim C (2010) A structural-alphabet-based strategy for finding structural motifs across protein families, Nucleic Acids Res. doi: 10.1093/nar/gkq478

  • Yang TY, Dudev T, Lim C (2008) Mononuclear versus binuclear metal-binding sites: metal-binding affinity and selectivity from PDB survey and DFT/CDM calculations. J Am Chem Soc 130:3844–3852

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann O, Hansmann UH (2008) LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach. J Chem Inf Model 48:1903–1908

    Article  CAS  PubMed  Google Scholar 

  • Zuo YC, Li QZ (2009) Using reduced amino acid composition to predict defensin family and subfamily: Integrating similarity measure and structural alphabet. Peptides 30:1788–1793

    Article  CAS  PubMed  Google Scholar 

  • Zuo YC, Li QZ (2010) Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids. Amino Acids 38:859–67

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their comments that help improve the manuscript. The research was supported by grants from the French Ministry of Research, University of Paris Diderot–Paris 7, University of Saint-Denis de la Réunion, French National Institute for Blood Transfusion (INTS), French Institute for Health and Medical Research (INSERM), and Indian Department of Biotechnology. APJ and GA are supported by CEFIPRA number 3903-E and Council of Scientific and Industrial Research, respectively. AB had a grant from the French Ministry of Research, MT has a post-doctoral fellowship from NIH, and HV had a post-doctoral fellowship from CEA. NS and AdB acknowledge CEFIPRA for collaborative grant (number 3903-E). BS and AdB acknowledge Partenariat Hubert Curien Barrande (2010–2011). BS is supported by grant AV0Z50520701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre G. de Brevern.

Additional information

Agnel Praveen Joseph and Garima Agarwal contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, A.P., Agarwal, G., Mahajan, S. et al. A short survey on protein blocks. Biophys Rev 2, 137–145 (2010). https://doi.org/10.1007/s12551-010-0036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-010-0036-1

Keywords

Navigation