Skip to main content
Log in

Multi-agent-based bio-network for systems biology: protein–protein interaction network as an example

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein–protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bader GD, Hogue CWV (2002) Analyzing yeast protein–protein interaction data obtained from different sources. Nat Biotechnol 20:991–997

    Article  PubMed  CAS  Google Scholar 

  • Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–387

    Article  PubMed  CAS  Google Scholar 

  • Cardelli L (2005) Abstract machines of systems biology. LNCS Trans Comput Syst Biol 3:145–168

    Article  Google Scholar 

  • Chou KC (1989) Graphical rules in steady and non-steady enzyme kinetics. J Biol Chem 264:12074–12079

    PubMed  CAS  Google Scholar 

  • Chou KC (1990) Review: applications of graph theory to enzyme kinetics and protein folding kinetics: steady and non-steady state systems. Biophys Chem 35:1–24

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    PubMed  CAS  Google Scholar 

  • Chou KC (2005) Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res 4:1681–1686

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2006) Predicting protein–protein interactions from sequences in a hybridization space. J Proteome Res 5:316–322

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Watenpaugh KD, Heinrikson RL (1999) A model of the complex between cyclin-dependent kinase 5(Cdk5) and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun 259:420–428

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD, Zhong WZ (2006) Predicting networking couples for metabolic pathways of Arabidopsis. EXCLI J 5:55–65

    Google Scholar 

  • Ding YS (2007) A new framework for computational intelligence: bio-network architecture (in Chinese). J Intell Syst 2(2):26–30

    Google Scholar 

  • Ding YS, Ren LH (2003) Design of a bio-network architecture based on immune emergent computation (in Chinese). Control Decis 18(2):185–189

    Google Scholar 

  • Ding YS, Gao L, Ruan D (2007a) Communication mechanisms in ecological network-based grid middleware for service emergence. Inf Sci 177(3):722–733

    Article  Google Scholar 

  • Ding YS, Sun HB, Hao KR (2007b) A bio-inspired emergent system for intelligent web service composition and management. Knowl Based Syst 20(5):457–465

    Article  Google Scholar 

  • d’Inverno M, Saunders R (2005) Agent-based modelling of stem cell organisation in a niche. In: Brueckner SA, Di Marzo Serugendo G, Karageorgos A, et al. (eds) Engineering self-organising systems: methodologies and applications. Springer, Berlin

  • Ferracuti S, Nelson B, Paoluzi S et al (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295:321–324

    Article  PubMed  Google Scholar 

  • Finkelstein A, Hetherington J, Li L, Margominski O, Saffrey P, Seymour R, Warner A (2004) Computational challenges of systems biology. IEEE Comput 37:26–33

    Google Scholar 

  • Gao L, Ding YS, Ren LH (2004) A novel ecological network-based computation platform as grid middleware system. Int J Intell Syst 19(10):859–88

    Article  Google Scholar 

  • Gao L, Ding YS, Ying H (2006) An adaptive social network-inspired approach to resource discovery for the complex grid systems. Int J Gen Syst 35(3):347–360

    Article  Google Scholar 

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez P, Cardenas M, Camacho D, Franyuti A, Rosas O, Otero J (2003) Cellulat: an agent-based intracellular signaling model. Biosystems 68:171–185

    Article  PubMed  Google Scholar 

  • González-Díaz H, González-Díaz Y, Santana L, Ubeira FM, Uriarte E (2008) Proteomics, networks, and connectivity indices. Proteomics 8:750–778

    Article  PubMed  Google Scholar 

  • Harada K, Kinoshita T (2003) The emergence of controllable transient behavior using an agent diversification strategy. IEEE Trans SMC Part A Syst Hum 33(5):589–596

    Article  Google Scholar 

  • Hucka M, Finney A, Sauro H et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biomedical network models. Bioinformatics 19:524–531

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resources for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002) Foundations of systems biology. MIT Press, Cambridge

    Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    Article  PubMed  CAS  Google Scholar 

  • Milo R, Shen-Orr SS, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  PubMed  CAS  Google Scholar 

  • Pogson M, Holcomb M, Qwarnstrom E (2004) An agent based model of the NFkB signaling pathways. In: Proceedings of the 5th international conference on systems biology (ICSB2004), Heidelberg

  • Qi JP, Shao SH, Li DD, Zhou GP (2007) A dynamic model for the p53 stress response networks under ion radiation. Amino Acids 33:75–83

    Article  PubMed  CAS  Google Scholar 

  • Read DW (2003) Emergent properties in small scale societies. Artif Life 9(4):419–428

    Article  PubMed  Google Scholar 

  • Shikata N, Maki Y, Noguchi Y, Mori M, Hanai T, Takahashi M, Okamoto M (2007) Multi-layered network structure of amino acid (AA) metabolism characterized by each essential AA-deficient condition. Amino Acids 33:113–21

    Article  PubMed  CAS  Google Scholar 

  • Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420:190–193

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84

    Article  PubMed  CAS  Google Scholar 

  • Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large scale data sets of protein–protein interactions. Nature 417:399–403

    Google Scholar 

  • von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417:399–403

    Article  Google Scholar 

  • Walker D, Southgate J, Hill G, Holcombe M, Hose DR, Wood SM, Mac Neil S, Smallwood RH (2004) The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems 76:89–100

    Article  PubMed  CAS  Google Scholar 

  • Xu CS, Chang CF (2008) Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration. Amino Acids 34:91–102

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Dobbs D, Honavar V (2004) A two-stage classifier for identification of protein-protein interface residues. Bioinformatics 20(Suppl 1):I371–I378

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Luan CH, Chou KC, Johnson GVW (2002) Identification of the N-terminal functional domains of Cdk5 by molecular truncation and computer modeling. Proteins Struct Funct Genet 48:447–453

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Deng MH (1984) An extension of Chou’s graphical rules for deriving enzyme kinetic equations to system involving parallel reaction pathways. Biochem J 222:169–176

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Key Project of the National Nature Science Foundation of China (No. 60534020), the National Nature Science Foundation of China (No. 60775052), the Cultivation Fund of the Key Scientific and Technical Innovation Project from the Ministry of Education of China (No. 706024), International Science Cooperation Foundation of Shanghai (No. 061307041), and Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education of China (No. 20060255006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Hong Ren or Yong-Sheng Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, LH., Ding, YS., Shen, YZ. et al. Multi-agent-based bio-network for systems biology: protein–protein interaction network as an example. Amino Acids 35, 565–572 (2008). https://doi.org/10.1007/s00726-008-0081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0081-2

Keywords

Navigation