Skip to main content
Log in

Broadband EPR Spectroscopy of the Ground Electron State of the Fe4+ Impurity Ion in Amethyst

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Fine structure of ground electron state of Fe4+ impurity ion in a natural amethyst crystal was studied by broadband electron paramagnetic resonance spectroscopy in the frequency range of 34–500 GHz. It is established that energy levels scheme consists of ground quasi-doublet Sz = ± 2, quasi-doublet S z= ± 1 and singlet Sz=0 with zero-field energies ± 4.9 GHz, 435.2 ± 45.4 GHz and 584 GHz, respectively. Parameters of effective spin Hamiltonian describing dependences of electron spin levels on magnetic field are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.I. Barry, P. McNamara, W. Moore, J. Chem. Phys. 42, 2599 (1965)

    Article  ADS  Google Scholar 

  2. G. Lehmann, W.J. Moore, J. Chem. Phys. 44, 1741 (1966)

    Article  ADS  Google Scholar 

  3. A.L. Cohen, F. Hassan, Am. Miner. 59, 719 (1974)

    Google Scholar 

  4. G. Lehmann, Am. Miner. 60, 335 (1975)

    Google Scholar 

  5. A.L. Cohen, Am. Miner. 70, 1180 (1984)

    Google Scholar 

  6. S.K. Dedushenko, I.B. Makhnina, A.A. Mar’in, V.A. Mukhanov, Yu.D. Perfiliev, Hyperfine Interact. 156/157, 417 (2004)

    Article  ADS  Google Scholar 

  7. F. Di Benedetto, F. D’Acapito, G. Fornaciai, M. Innocenti, G. Montegrossi, L.A. Pardi, S. Tesi, M. Romanelli, Phys. Chem. Minerals 37, 283 (2010)

    Article  ADS  Google Scholar 

  8. E.H.M. Nunes, F.S. Lameiras, M. Houmard, W.L. Vasconcelos, Radiat. Phys. Chem. 90, 79 (2013). https://doi.org/10.1016/radphyschem.2013.05.003

    Article  ADS  Google Scholar 

  9. M. Czaja, M. Kądziołka-Gaweł, A. Konefał, R. Sitko, E. Teper, Z. Mazurak, M. Sachanbinґski, Chem. Minerals 44, 365 (2017). https://doi.org/10.1007/s002R69-016-0864-z

    Article  ADS  Google Scholar 

  10. R. Cheng, Y. Guo, Sci. Rep. 10, 14927 (2020). https://doi.org/10.1038/s41598-020-71786-1

    Article  Google Scholar 

  11. R. Chen, W. Lu, J. Lu, R. Pu, J. Lin, J. Yu, Physica B 627, 413550 (2022). https://doi.org/10.1016/j.physb.2021.413550

    Article  Google Scholar 

  12. J.A. Weil, Phys. Chem. Minerals 10, 149 (1984)

    Article  ADS  Google Scholar 

  13. J.A. Weil, Appl. Magn. Reson. 6, 1 (1994)

    Article  Google Scholar 

  14. S.U. Cortezão, W.M. Pontuschka, M.S.F. Da Rocha, A.R. Blak, J. Phys. Chem. Solids 64, 1151 (2003). https://doi.org/10.1016/S0022-3697(03)00043-X

    Article  ADS  Google Scholar 

  15. G. SivaRamaiah, J. Lin, Yu. Pan, Phys. Chem. Minerals 38, 159 (2011). https://doi.org/10.1007/s00269-010-0391-2

    Article  ADS  Google Scholar 

  16. R.T. Cox, J. Phys. C: Solid State Phys. 9, 3355 (1976)

    Article  ADS  Google Scholar 

  17. V.F. Tarasov, G.S. Shakurov, Appl. Magn. Reson. 2, 571 (1991)

    Article  Google Scholar 

  18. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006). https://doi.org/10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  19. J.S. Griffitth, Phys. Rev. 132, 316 (1963)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to V.A. Shustov for the X-ray diffraction study of the samples and to Distributed Spectral-Analytical Center of Shared Facilities for Study of Structure, Composition and Properties of Substances and Materials of FRC Kazan Scientific Center of RAS for providing necessary facilities to carry out the experimental measurements. The work was performed with the financial support from the government assignment for FRC Kazan Scientific Center of RAS.

Funding

The work was performed with the financial support from the government assignment for FRC Kazan Scientific Center of RAS. ID 122011800133–2.

Author information

Authors and Affiliations

Authors

Contributions

VDS made substantial contributions to the conception of the work carried out EPR measurements in submillimeter band and wrote drafts of the manuscript. RBZ carried out EPR measurements in Q-band. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to V. F. Tarasov.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.F., Zaripov, R.B. & Scherbakov, V.D. Broadband EPR Spectroscopy of the Ground Electron State of the Fe4+ Impurity Ion in Amethyst. Appl Magn Reson 54, 679–686 (2023). https://doi.org/10.1007/s00723-023-01545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01545-8

Navigation