Skip to main content
Log in

Analysis of Dynamic EPR Spectra of pH-Sensitive Nitroxides Using Machine Learning

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

This research presents the application and comparison of the most popular machine learning algorithms (multilayer perceptron, ensemble of networks, convolutional neural network) to predict the shape of dynamic EPR signals of pH-sensitive nitroxide radicals (NR) with varying degrees of rotational correlation from EPR spectra obtained during the analysis of solid-phase systems. A training sample example consisting of theoretically modelled EPR spectra of pH-sensitive nitroxide radicals was prepared for the network learning. The result of applying and comparing machine learning algorithms with results obtained from simulations by the specialized software ODFR4 demonstrated that the multilayer perceptron and ensemble of networks have good accuracy in prediction signal shapes, however, within rather narrow scope of applicability. The convolutional neural network showed the worst results in predicting signal shapes. The results of this work can be useful for the development of software design to quickly estimate the parameters of analyzed systems by processing the EPR spectra of pH-sensitive nitroxide radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Yes (We will share them if needed).

Code Availability

Yes (We will share them if needed).

References

  1. V.K. Khlestkin, J.F. Polienko, M.A. Voinov, A.I. Smirnov, V. Chechik, Langmuir (2008). https://doi.org/10.1021/la702823n

    Article  Google Scholar 

  2. A.N. Tikhonov, R.V. Agafonov, I.A. Grigorev, I.A. Kirilyuk, V.V. Ptushenko, B.V. Trubitsin, Bioenergetics. (2008). https://doi.org/10.1016/j.bbabio.2007.12.002

    Article  Google Scholar 

  3. D.O. Antonov, D.P. Tambasova, A.B. Shishmakov, I.A. Kirilyuk, E.G. Kovaleva, Gels. (2021). https://doi.org/10.3390/gels7030119

    Article  Google Scholar 

  4. E.G. Kovaleva, L.S. Molochnikov, U. Venkatesan, A. Marek, D.P. Stepanova, K.V. Kozhikhova, M.A. Mironov, A.I. Smirnov, J. Phys. Chem. C. (2016). https://doi.org/10.1021/acs.jpcc.5b10241

    Article  Google Scholar 

  5. D.A. Komarov, Y. Ichikawa, K.Y. Amamoto, N.J. Stewart, S. Matsumoto, H. Yasui, I.A. Kirilyuk, V.V. Khramtsov, O. Inanami, H Hirata Anal. Chem. (2018). https://doi.org/10.1021/acs.analchem.8b03328

    Article  Google Scholar 

  6. L.S. Molochnikov, E.G. Kovaleva, E.L. Golovkina, I.A. Kirilyuk, I.A. Grigor’ev, Colloid J. (2007). https://doi.org/10.1134/S1061933X07060130

    Article  Google Scholar 

  7. E.G. Kovaleva, L.S. Molochnikov, I.N. Lipunov, I.A. Grigor’ev, Rus. J. of Phys. Chem. 74(8), 1262–1267 (2000)

    Google Scholar 

  8. E.G. Kovaleva, L.S. Molochnikov, E.L. Golovkina, M. Hartmann, I.A. Kirilyuk, I.A. Grigoriev, Microporous and Mesoporous Mater. (2015). https://doi.org/10.1016/j.micromeso.2014.10.010

    Article  Google Scholar 

  9. L.S. Molochnikov, E.G. Kovalyova, I.A. Grigorev, A.A. Zagorodni, J. Phys. Chem. B (2004). https://doi.org/10.1021/jp021785t

    Article  Google Scholar 

  10. E.G. Kovaleva, L.S. Molochnikov, D.P. Stepanova, A.V. Pestov, D.G. Trofimov, I.A. Kiriluyuk, A.I. Smirnov, Cell Biochem. Biophys. (2017). https://doi.org/10.1007/s12013-016-0767-0

    Article  Google Scholar 

  11. E.G. Kovaleva, L.S. Molochnikov, D.O. Antonov, D.P. Tambasova, M. Hartmann, A.N. Tsmokalyuk, A. Marek, A.I. Smirnov, J. Phys. Chem. C. (2018). https://doi.org/10.1021/acs.jpcc.8b04938

    Article  Google Scholar 

  12. S. Stoll, A. Schweiger, J. Magn. Resonance. (2005). https://doi.org/10.1016/j.jmr.2005.08.013

    Article  Google Scholar 

  13. AKh. Vorobiev, A.V. Bogdanov, T.S. Yankova, N.A. Chumakova, Phys. Chem. B (2019). https://doi.org/10.1021/acs.jpcb.9b05431

    Article  Google Scholar 

  14. D.E. Budil, S. Lee, S. Saxena, J.H. Freed, J. Magn. Resonance S. A. (1996). https://doi.org/10.1006/jmra.1996.0113

    Article  Google Scholar 

  15. K. Levenberg, Quart. Appl. Math. (1944). https://doi.org/10.1090/qam/10666

    Article  MathSciNet  Google Scholar 

  16. C.D. Rankine, M.M.M. Madkhali, T.J. Penfold, J. Phys. Chem. A. (2020). https://doi.org/10.1021/acs.jpca.0c03723

    Article  Google Scholar 

  17. A. Aarva, V.L. Deringer, S. Sainio, T. Laurila, M.A. Caro, Chem. Mater. (2019). https://doi.org/10.1021/acs.chemmater.9b02050

    Article  Google Scholar 

  18. O.A. Usoltsev, A.L. Bugaev, A.A. Guda, S.A. Guda, A.V. Soldatov, Top. Catal. (2020). https://doi.org/10.1007/s11244-020-01221-2

    Article  Google Scholar 

  19. J. Terry, M.L. Lau, J. Sun, C. Xu, B. Hendricks, J. Kise, M. Lnu, S. Bagade, S. Shah, P. Makhijani, A. Karantha, T. Boltz, M. Oellien, M. Adas, S. Argamon, M. Long, D.P. Guillen, Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.149059

    Article  Google Scholar 

  20. W.M. Holden, E.P. Jahrman, N. Govind, G.T. Seidler, J. Phys. Chem. A. (2020). https://doi.org/10.1021/acs.jpca.0c04195

    Article  Google Scholar 

  21. R. Zhang, H. Xie, S. Cai, Y. Hu, G. Liu, W. Hong, Z. Tian, J. Raman. Spectrosc. (2019). https://doi.org/10.1002/jrs.5750

    Article  Google Scholar 

  22. G. Yin, L.S. Lu, Y. Yin, Y. Su, Y. Zeng, M. Luo, M. Ma, H. Zhou, L. Orlandini, D. Yao, G. Liu, J. Lang. J. Raman. Spectrosc. (2021). https://doi.org/10.1002/jrs.6080

    Article  Google Scholar 

  23. W. Hu, S. Ye, T. Li, G. Zhang, Y. Luo, S. Mukamel, J. Jiang, J. Phys. Chem. Lett. (2019). https://doi.org/10.1021/acs.jpclett.9b02517

    Article  Google Scholar 

  24. B.T. Le, Vib. Spectrosc. (2020). https://doi.org/10.1016/j.vibspec.2019.103009

    Article  Google Scholar 

  25. H. Chen, C. Tan, Z. Lin, Spectrochim. Acta A. (2020). https://doi.org/10.1016/j.saa.2019.117982

    Article  Google Scholar 

  26. P. Mishra, D. Passos. (2021). https://doi.org/10.1016/j.chemolab.2021.104287

    Article  Google Scholar 

  27. A. Mascellani, G. Hoca, M. Babisz, P. Krska, P. Kloucek, J. Havlik, Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2020.127852

    Article  Google Scholar 

  28. S.H. Martinez-Trevino, V. Uc-Cetina, M.A. Fernandez-Herrera, G. Merino, J. Chem. Inf. Model. (2020). https://doi.org/10.1021/acs.jcim.0c00293

    Article  Google Scholar 

  29. T. Vu, P. Siemek, F. Bhinderwala, Y. Xu, R. Powers, J. Proteome Res. (2019). https://doi.org/10.1021/acs.jproteome.9b00227

    Article  Google Scholar 

  30. A. Khailov, A. Ivannikov, K. Zhumadilov, V. Stepanenko, A. Karpin, P. Shegay, S. Ivanov, Radiat. Meas. (2020). https://doi.org/10.1016/j.radmeas.2020.106435

    Article  Google Scholar 

  31. S.G. Worswick, J.A. Spencer, I. Kuprov, Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aat5218

    Article  Google Scholar 

  32. H. Chen, Z. Liu, J. Gu, W. Ai, J. Wen, K. Cai, Anal. Method. (2018). https://doi.org/10.1039/c8ay01076e

    Article  Google Scholar 

  33. Q. Li, Y. Huang, J. Zhang, S. Min, Spectrochim. Acta A. (2021). https://doi.org/10.1016/j.saa.2020.119119

    Article  Google Scholar 

  34. M. Winkler, H. Sonner, M. Gleiss, H. Nirschl, Chem. Eng. Sci. (2020). https://doi.org/10.1016/j.ces.2019.115374

    Article  Google Scholar 

  35. S. Wang, S. Liu, X. Che, Z. Wang, J. Zhang, D. Kong, Spectrochim. Acta A. (2020). https://doi.org/10.1016/j.saa.2019.117404

    Article  Google Scholar 

  36. X. Zhang, N. Li, C. Yan, J. Zheng, T. Zhang, H. Li, J. Anal. At. Spectrom. (2020). https://doi.org/10.1039/c9ja00360f

    Article  Google Scholar 

  37. S. Haykin, Neural networks. A Comprehensive foundation, 2nd edn. (Prentice Hall, Ontario, 1998)

    MATH  Google Scholar 

  38. F. Rozenblatt, Psychol. Rev. 65, 386–408 (1958)

    Article  Google Scholar 

  39. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016), p.197

    MATH  Google Scholar 

  40. C. Jones, N.S. Daly, C. Higgitt, M.R.D. Rodrigues, Herit. Sci. (2022). https://doi.org/10.1186/s40494-022-00716-3

    Article  Google Scholar 

  41. Sita L, Brondi M, de LeonRoig PL, Curreli S, Panniello M, Vecchia D, Fellin T. (2022) Nat. Commun. Doi: https://doi.org/10.1038/s41467-022-29180-0

  42. X. Chen, G. Cheng, S. Liu, S. Meng, Y. Jiao, W. Zhang, J. Liang, W. Zhang, B. Wang, X. Xu, J. Xu. Spectrochim. Acta A. (2022). https://doi.org/10.1016/j.saa.2022.121350

    Article  Google Scholar 

  43. C. Ho, N. Jean, C.A. Hogan, L. Blackmon, S.S. Jeffrey, M. Holodniy, N. Banaei, A.A.E. Saleh, S. Ermon, J. Dionne. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-12898-9

    Article  Google Scholar 

  44. J. Liu, M. Osadchy, L. Ashton, M. Foster, C.J. Solomon, S., J. Gibson. Analyst. (2017). https://doi.org/10.1039/c7an01371j

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant in the form of subsidy No. 075-15-2022-1251 dated 12/13/2022 between Ural Federal University and the Ministry of Science and Higher Education of the Russian Federation.

Funding

The study was supported by a grant in the form of subsidy No. 075–15-2022–1251 dated 12/13/2022 between Ural Federal University and the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Contributions

DR Davydov was preparing the text of the manuscript and preparing the training set and developing neural network topologies. DO Antonov was preparing samples and obtaining electron paramagnetic resonance spectra. EG Kovaleva prepared the text and pictures of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to D. R. Davydov.

Ethics declarations

Conflict of Interest

None.

Ethical approval

Not applicable.

Consent of Publication

We give our consent for the publication of the following manuscript to be published in the Journal–Applied Magnetic Resonance. This consent statement was discussed with E. G. Kovaleva and D. O. Antonov, who are co-authors of this research article. We understand that this copy may be available in both print and in the Internet, and will be available to a broader audience through marketing channels and other third parties. Therefore, anyone can read material published in the Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 297 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, D.R., Antonov, D.O. & Kovaleva, E.G. Analysis of Dynamic EPR Spectra of pH-Sensitive Nitroxides Using Machine Learning. Appl Magn Reson 54, 595–612 (2023). https://doi.org/10.1007/s00723-023-01531-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01531-0

Keywords

Navigation