Skip to main content
Log in

EPR Spectra and Electron Spin Relaxation of O2

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

It has been known from the pioneering and approximately simultaneous work of Freed and Frankel, Hausser and Deguchi (1959–1960) that collisions with O2 in fluid solutions broaden the electron paramagnetic resonance (EPR) spectra of free radicals. Freed showed Hausser the effect of degassing solutions on the hyperfine of DPPH. Hausser and Deguchi published spectra illustrating the effect. The effect of O2 on CW EPR spectra and on relaxation times has been applied to the problem of measuring O2 concentration in vivo. Various aspects of the effect of O2 on biological EPR and on the biological systems have been studied. A large literature has developed about in vivo O2 measurements using nitroxyl radicals, triarylmethyl radicals (trityl, TAM), carbon particles, and analogues of lithium phthalocyanine (LiPc). All of these measurements correctly assume that the O2 electron spin relaxation time is short relative to the relaxation time of the sensor molecules. There has been no prior review of the EPR spectra and electron spin relaxation of O2 in the gas phase, dissolved in fluid solution, and in frozen solutions. A summary of the relevant literature is presented here as a resource for the O2 measurement community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Freed, Personal communication (2020)

  2. K.H. Hausser, Naturwissenschaften 47, 251 (1960)

    Article  ADS  Google Scholar 

  3. K.H. Hausser, Chimia 14, 153–161 (1960)

    Google Scholar 

  4. Y. Deguchi, J. Chem. Phys. 32, 1584–1585 (1960)

    Article  ADS  Google Scholar 

  5. H.M. Swartz, J.R. Bolton, D.C. Borg, Biological Applications of Electron Spin Resonance (Wiley, New York, 1972).

    Google Scholar 

  6. H.M. Swartz, Intl. Rev. Cytol. 35, 321–343 (1973)

    Article  Google Scholar 

  7. B. Epel, G. Redler, H.J. Halpern,  in Oxygen Transport to Tissue, Ed., Ch. 15 (2014)

  8. K.-I. Matsumoto, J.B. Mitchell, M.C. Krishna, Free Rad. Biol Med. 130, 343–347 (2019)

    Article  Google Scholar 

  9. F. Goda, K.J. Liu, T. Walczak, J.A. O’Hara, J. Jiang, H.M. Swartz, Magn. Reson. Med. 33, 237–245 (1995)

    Article  Google Scholar 

  10. S.W. Norby, H.M. Swartz, R.B. Clarkson, J. Micros. 12, 172–185 (1998)

    Article  Google Scholar 

  11. T. Engel, Quantum Chemistry and Spectroscopy. Pearson Boston, pp. 184–189 (2019)

  12. B. Bleaney, in Foundations of Modern EPR, G. R. Eaton, S. S. Eaton, K. M. Salikov, Eds. World Scientific, Singapore, pp. 265–277 (1998)

  13. R. Beringer, J.G.J. Castle, Phys. Rev. 81, 82–88 (1951)

    Article  ADS  Google Scholar 

  14. J. G. Castle, in Foundations of Modern EPR, G. R. Eaton, S. S. Eaton, A. K. Salikhov, Eds. World Scientific, Singapore, pp. 271–277 (1998)

  15. J.S. Hyde, S.S. Eaton, G.R. Eaton, Concepts in magnetic resonance. Thematic Issue 28A, 1–100 (2006)

    Article  Google Scholar 

  16. S.A. Marshall, B.H. Suits, M.T. Umlor, Y.N. Zhang, J. Magn. Reson. 76, 494–503 (1988)

    ADS  Google Scholar 

  17. M. Tinkham, M.P.W. Strandberg, Phys. Rev. 97, 951–966 (1955)

    Article  ADS  Google Scholar 

  18. M. Tinkham, Proc. Roy. Soc. A 236, 535–548 (1956)

    ADS  Google Scholar 

  19. S. Kimura, K. Kindo, Phys. B 329–333, 1168–1169 (2003)

    Article  ADS  Google Scholar 

  20. P. Krupenie, J. Phys. Chem. Ref. Data 1, 423–534 (1972)

    Article  ADS  Google Scholar 

  21. R. Hausser, F. Noack, Z. Naturforsch. A 20, 1688–1675 (1965)

    ADS  Google Scholar 

  22. J.-J. Delpuech, M.A. Hamza, G. Serratrice, M.-J. Stebe, J. Chem. Phys. 70, 2680–2687 (1979)

    Article  ADS  Google Scholar 

  23. M.A. Hamza, G. Serratrice, M.J. Stebe, J.-J. Delpuech, J. Amer. Chem. Soc. 103, 3733–3738 (1981)

    Article  Google Scholar 

  24. C.-L. Teng, H. Hong, S. Kiihne, R.G. Bryant, J. Magn. Reson. 148, 31–34 (2001)

    Article  ADS  Google Scholar 

  25. W.K. Subczynski, H.M. Swartz, Biol. Magn. Reson. 23, 229–282 (2005)

    Article  Google Scholar 

  26. W.K. Subczynski, J.S. Hyde, Biochem. Biophys. Acta 643, 283–291 (1981)

    Article  Google Scholar 

  27. B. Epel, M.K. Bowman, C. Mailer, H.J. Halpern, Magn. Reson. Med. 72, 362–368 (2014)

    Article  Google Scholar 

  28. G. Diakova, R.G. Bryant, J. Magn. Reson. 178, 329–333 (2006)

    Article  ADS  Google Scholar 

  29. S.S. Eaton, D.L. DuBois, P.M. Boymel, G.R. Eaton, J. Phys. Chem. 83, 3323–3325 (1979)

    Article  Google Scholar 

  30. J. Deschamps, M.F. Costa-Gomes, A.A.H. Padua, J. Fluorine Chem. 125, 409–413 (2004)

    Article  Google Scholar 

  31. A.M.A. Dias, C.M.B. Goncalves, J.L. Legido, J.A.P. Coutinho, I.M. Marrucho, Fluid Phase Equilib. 238, 7–12 (2005)

    Article  Google Scholar 

  32. E.P. Wesseler, R. Iltis, L.C. Clark, J. Fluorine Chem. 9, 137–146 (1977)

    Article  Google Scholar 

  33. A. Moscatelli, M.F. Ottaviani, W. Adams, A. Buchachenko, S. Jockush, N.J. Turro, Helv. Chim. Acta 89, 2441–2449 (2006)

    Article  Google Scholar 

  34. H. Kon, J. Amer. Chem. Soc. 95, 1045–1049 (1973)

    Article  Google Scholar 

  35. J.R. Breyberg, Chem. Phys. Lett. 57, 579–581 (1978)

    Article  ADS  Google Scholar 

  36. L.A. Pardi, J. Krzystek, J. Tesler, L.-C. Brunel, J. Magn. Reson. 146, 375–378 (2000)

    Article  ADS  Google Scholar 

  37. E. van der Horst, P.J.M van Bentrum, Physica B, pp. 294–295 (2001)

  38. G. Pangilinan, G. Guelachvili, R. Sooryakuma, K.N. Rao, R.H. Tipping, Phys. Rev. B 39, 2522–2525 (1989)

    Article  ADS  Google Scholar 

  39. J.W. McNabb, D.N. Balakishiyeva, A. Honig, J. Magn. Reson. 188, 206–215 (2007)

    Article  ADS  Google Scholar 

  40. S. Foner, H. Meyer, W.H. Kleiner, Phys. Chem. Solids 18, 273–285 (1961)

    Article  ADS  Google Scholar 

  41. I.M. Brown, J. Chem. Phys. 65, 630–638 (1976)

    Article  ADS  Google Scholar 

  42. S.A. Sutin, G.M. Zhidomirov, B.N. Shelimov, V.B. Kazanskii, Theor. Exp. Chem. 6, 287–290 (1970)

    Google Scholar 

  43. A.R. Marts, S.M. Greer, D.R. Whitehead, T.M. Woodruff, R.M. Breece, S.W. Shim, D.N. Oseback, E.T. Papish, F.E. Jacobsen, S.M. Cohen, D.L. Tierney, Appl. Magn. Reson. 40, 501–511 (2011)

    Article  Google Scholar 

  44. M. Yagi, S. Takemoto, R. Sasase, Chem. Lett. 33, 152–153 (2004)

    Article  Google Scholar 

  45. K. Hasegawa, K. Yamada, R. Sasase, R. Miyazaki, A. Kikuchi, M. Yagi, Chem. Phys. Lett. 457, 312–314 (2008)

    Article  ADS  Google Scholar 

  46. H.M. Swartz, Acta Biochim. Biophys. Hungarica 22, 277–293 (1987)

    Google Scholar 

Download references

Acknowledgements

This review was stimulated by the celebration of the career of Professor Harold M. Swartz, who introduced the scientific community to the need and potential for EPR to monitor O2 concentration in vivo and especially in viable systems. His perspective is reflected in, for example, ref. [6, 46].

Funding

Funding for this work by National Institutes of Health NCI AIP Grant CA177744 and the University of Denver is gratefully acknowledged. Joseph McPeak (University of Denver) provided Fig. 6. Discussions with Prof. Howard J. Halpern (University of Chicago) and Prof. Joseph P. Y. Kao (University of Maryland) were important contributions to our understanding of the effects of O2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth R. Eaton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eaton, S.S., Eaton, G.R. EPR Spectra and Electron Spin Relaxation of O2. Appl Magn Reson 52, 1223–1236 (2021). https://doi.org/10.1007/s00723-021-01353-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01353-y

Navigation