Skip to main content

Electron Paramagnetic Resonance (EPR)

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Part of the book series: Springer Handbooks ((SHB))

  • 2586 Accesses

Abstract

Active species in catalytic systems include many oxidation states of metal ions, and free radicals. The information derived from the spectra varies from structure to dynamics. EPR is well suited to in situ studies: the hardware necessary to reach the temperatures and pressures common to catalysis is well within reach, and quite a few strategies have been developed to gather information about chemical systems. These include the capture and preservation of short-lived radicals by spin trapping, and the tracing of reaction pathways via the use of isotopic labeling. The technique is compatible with various ways of creating operando conditions, including plug flow reactor sample cells, in situ photolysis and electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lunsford, J.: EPR methods in heterogeneous catalysis. In: Catalysis, pp. 227–256. Springer (1987)

    Google Scholar 

  2. Louis, C., Lepetit, C., Che, M.: EPR characterization of oxide supported transition metal ions: relevance to catalysis. In: Radicals on Surfaces, pp. 3–38. Springer (1995)

    Google Scholar 

  3. Sojka, Z.: Molecular aspects of catalytic reactivity. Application of EPR spectroscopy to studies of the mechanism of heterogeneous catalytic reactions. Catal. Rev. 37, 461–512 (1995)

    CAS  Google Scholar 

  4. Werst, D., Han, P., Trifunac, A.: Radiation chemical studies in zeolites: radical cations and zeolite catalysis. Radiat. Phys. Chem. 51 (1998)

    Google Scholar 

  5. Sojka, Z., Che, M.: Catalytic chemistry of transition metal ions on oxide surfaces. A molecular approach using EPR techniques. C. R. Acad. Sci. 3, 163–174 (2000)

    CAS  Google Scholar 

  6. Labanowska, M.: EPR monitoring of redox processes in transition metal oxide catalysts. ChemPhysChem. 2, 712–731 (2001)

    CAS  Google Scholar 

  7. Van Doorslaer, S., Murphy, D.M.: EPR spectroscopy in catalysis. In: EPR Spectroscopy, pp. 1–39. Springer (2011)

    Google Scholar 

  8. Drescher, M.: EPR Spectroscopy: Applications in Chemistry and Biology. Springer (2012)

    Google Scholar 

  9. Goswami, M., Chirila, A., Rebreyend, C., de Bruin, B.: EPR spectroscopy as a tool in homogeneous catalysis research. Top. Catal. 58, 719–750 (2015)

    CAS  Google Scholar 

  10. Hao, Z., Fen, L., Lu, G., Liu, J., An, L., Wang, H.: In situ electron paramagnetic resonance (EPR) study of surface oxygen species on Au/Zno catalyst for low-temperature carbon monoxide oxidation. Appl. Catal. A Gen. 213, 173–177 (2001)

    CAS  Google Scholar 

  11. Hunger, M., Weitkamp, J.: In situ IR, NMR, EPR, and UV/Vis spectroscopy: tools for new insight into the mechanisms of heterogeneous catalysis. Angew. Chem. Int. Ed. 40, 2954–2971 (2001)

    CAS  Google Scholar 

  12. Brückner, A.: Monitoring transition metal ions (TMI) in oxide catalysts during (re) action: the power of operando EPR. Phys. Chem. Chem. Phys. 5, 4461–4472 (2003)

    Google Scholar 

  13. Zykwinska, A., Domagala, W., Czardybon, A., Pilawa, B., Lapkowski, M.: In situ EPR spectroelectrochemical studies of paramagnetic centres in poly (3, 4-ethylenedioxythiophene)(PEDOT) and poly (3, 4-butylenedioxythiophene)(PBuDOT) films. Chem. Phys. 292, 31–45 (2003)

    CAS  Google Scholar 

  14. Panchenko, A., Dilger, H., Kerres, J., Hein, M., Ullrich, A., Kaz, T., Roduner, E.: In-situ spin trap electron paramagnetic resonance study of fuel cell processes. Phys. Chem. Chem. Phys. 6, 2891–2894 (2004)

    CAS  Google Scholar 

  15. Weckhuysen, B. M., In-Situ Spectroscopy of Catalysts. American Scientific Publishers, Valencia, California (2004)

    Google Scholar 

  16. Brückner, A.: In situ electron paramagnetic resonance: a unique tool for analyzing structure–reactivity relationships in heterogeneous catalysis. Chem. Soc. Rev. 39, 4673–4684 (2010)

    Google Scholar 

  17. Risse, T., Hollmann, D., Brückner, A.: In Situ Electron Paramagnetic Resonance (EPR)–a Unique Tool for Analysing Structure and Reaction Behaviour of Paramagnetic Sites in Model and Real Catalysts, vol. 27. The Royal Society of Chemistry London (2015)

    Google Scholar 

  18. Prokopchuk, D.E., Wiedner, E.S., Walter, E.D., Popescu, C.V., Piro, N.A., Kassel, W.S., Bullock, R.M., Mock, M.T.: Catalytic N2 reduction to silylamines and thermodynamics of N2 binding at square planar Fe. J. Am. Chem. Soc. 139, 9291–9301 (2017)

    CAS  Google Scholar 

  19. Stoll, S., Schweiger, A.: Easyspin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006)

    CAS  Google Scholar 

  20. Kim, K.H., Dutta, T., Walter, E.D., Isern, N.G., Cort, J.R., Simmons, B.A., Singh, S.: Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization. ACS Sustain. Chem. Eng. 5, 3913–3919 (2017)

    CAS  Google Scholar 

  21. Bromberg, S.E., Chan, I.: Enhanced sensitivity for high-pressure EPR using dielectric resonators. Rev. Sci. Instrum. 63, 3670–3673 (1992)

    CAS  Google Scholar 

  22. Jaworski, M., Checiński, K., Bujnowski, W., Porowski, S.: High-pressure EPR cavity. Rev. Sci. Instrum. 49, 383–384 (1978)

    CAS  Google Scholar 

  23. Batchelor, S., Henningsen, B., Fischer, H.: EPR of transient free radicals during photochemical reactions in high temperature and pressure gases. Chem. A Eur. J. 101, 2969–2972 (1997)

    CAS  Google Scholar 

  24. Mendt, M., Vervoorts, P., Schneemann, A., Fischer, R.A., Pöppl, A.: Probing local structural changes at Cu2+ in a flexible mixed-metal metal-organic framework by in situ electron paramagnetic resonance during Co2 ad-and desorption. J. Phys. Chem. C. 123, 2940–2952 (2019)

    CAS  Google Scholar 

  25. Hogben, H., Krzystyniak, M., Charnock, G., Hore, P., Kuprov, I.: Spinach–a software library for simulation of spin dynamics in large spin systems. J. Magn. Reson. 208, 179–194 (2011)

    CAS  Google Scholar 

  26. Hanson, G.R., Gates, K.E., Noble, C.J., Griffin, M., Mitchell, A., Benson, S., Xsophe-Sophe-Xeprview®: A computer simulation software suite (V. 1.1. 3) for the analysis of continuous wave EPR spectra. J. Inorg. Biochem. 98, 903–916 (2004)

    CAS  Google Scholar 

  27. Bou-Abdallah, F., Chasteen, N.D.: Spin concentration measurements of high-spin (G′= 4.3) rhombic iron (iii) ions in biological samples: theory and application. J. Biol. Inorg. Chem. 13, 15–24 (2008)

    CAS  Google Scholar 

  28. Dyrek, K., Rokosz, A., Madej, A.: Spin dosimetry in catalysis research. Appl. Magn. Reson. 6, 309–332 (1994)

    CAS  Google Scholar 

  29. Eaton, G.R., Eaton, S.S., Barr, D.P., Weber, R.T.: Quantitative EPR. Springer Science & Business Media (2010)

    Google Scholar 

  30. Eaton, S.S., Eaton, G.R.: Signal area measurements in EPR. Bull. Magn. Reson. 1, 130–138 (1980)

    CAS  Google Scholar 

  31. Madej, A., Dyrek, K., Mattusch, J.: Preparation and evaluation of the quality of standards for quantitative EPR measurements of spin concentration. Fresenius J. Anal. Chem. 341, 707–708 (1991)

    CAS  Google Scholar 

  32. Zhang, Y., Peng, Y., Li, J., Groden, K., McEwen, J.-S., Walter, E.D., Chen, Y., Wang, Y., Gao, F.: Probing active-site relocation in Cu/SSZ-13 SCR catalysts during hydrothermal aging by in situ EPR spectroscopy, kinetics studies, and DFT calculations. ACS Catal. 10, 9410–9419 (2020)

    CAS  Google Scholar 

  33. Eaton, S.S., More, K.M., Sawant, B.M., Eaton, G.R.: Use of the ESR half-field transition to determine the interspin distance and the orientation of the interspin vector in systems with two unpaired electrons. J. Am. Chem. Soc. 105, 6560–6567 (1983)

    CAS  Google Scholar 

  34. Kutin, Y., Cox, N., Lubitz, W., Schnegg, A., Rüdiger, O.: In situ EPR characterization of a cobalt oxide water oxidation catalyst at neutral pH. Catalysts. 9, 926 (2019)

    CAS  Google Scholar 

  35. Hug, G.L., Camaioni, D.M., Carmichael, I.: EPR detection of Hno2•-in the radiolysis of aqueous nitrite and quantum chemical calculation of its stability and hyperfine parameters. Chem. A Eur. J. 108, 6599–6604 (2004)

    CAS  Google Scholar 

  36. Ohno, K.: Reaction kinetics with rapid mixing. EPR Imag. In Vivo EPR, 175–180 (2018)

    Google Scholar 

  37. Augusto, O., Goldstein, S., Hurst, J.K., Lind, J., Lymar, S.V., Merenyi, G., Radi, R.: Carbon dioxide-catalyzed peroxynitrite reactivity–the resilience of the radical mechanism after two decades of research. J Free Radic. Biol. Med. 135, 210 (2019)

    CAS  Google Scholar 

  38. Huang, X., Chen, Y., Walter, E., Zong, M., Wang, Y., Zhang, X., Qafoku, O., Wang, Z., Rosso, K.M.: Facet-specific photocatalytic degradation of organics by heterogeneous fenton chemistry on hematite nanoparticles. Environ. Sci. Technol. 53, 10197–10207 (2019)

    CAS  Google Scholar 

  39. Frejaville, C., Karoui, H., Tuccio, B., le Moigne, F., Culcasi, M., Pietri, S., Lauricella, R., Tordo, P.: 5-Diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO): a new phosphorylated nitrone for the efficient in vitro and in vivo spin trapping of oxygen-centred radicals. J. Chem. Soc. Chem. Commun., 1793–1794 (1994)

    Google Scholar 

  40. Yang, X., Cao, Y., Yu, H., Huang, H., Wang, H., Peng, F.: Unravelling the radical transition during the carbon-catalyzed oxidation of cyclohexane by in situ electron paramagnetic resonance in the liquid phase. Cat. Sci. Technol. 7, 4431–4436 (2017)

    CAS  Google Scholar 

  41. Chou, P.-W., Song, J.-M., Xie, Z.-Y., Akaike, M., Suga, T., Fujino, M., Lin, J.-Y.: Low temperature de-oxidation for copper surface by catalyzed formic acid vapor. Appl. Surf. Sci. 456, 890–898 (2018)

    CAS  Google Scholar 

  42. Duan, X., Su, C., Miao, J., Zhong, Y., Shao, Z., Wang, S., Sun, H.: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals. Appl. Catal. B Environ. 220, 626–634 (2018)

    CAS  Google Scholar 

  43. Duan, X., Li, W., Ao, Z., Kang, J., Tian, W., Zhang, H., Ho, S.-H., Sun, H., Wang, S.: Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation. J. Mater. Chem. A. 7, 23904–23913 (2019)

    CAS  Google Scholar 

  44. Li, D., Duan, X., Sun, H., Kang, J., Zhang, H., Tade, M.O., Wang, S.: Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: the effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon. 115, 649–658 (2017)

    CAS  Google Scholar 

  45. Wei, Z., Villamena, F.A., Weavers, L.K.: Kinetics and mechanism of ultrasonic activation of persulfate: An in situ EPR spin trapping study. Environ. Sci. Technol. 51, 3410–3417 (2017)

    CAS  Google Scholar 

  46. Tan, C., Dong, Y., Shi, L., Chen, Q., Yang, S., Liu, X., Ling, J., He, X., Fu, D.: Degradation of Orange II in ferrous activated peroxymonosulfate system: efficiency, situ EPR spin trapping and degradation pathway study. J. Taiwan Inst. Chem. Eng. 83, 74–81 (2018)

    CAS  Google Scholar 

  47. Mendoza, C., Désert, A., Khrouz, L., Páez, C.A., Parola, S., Heinrichs, B.: Heterogeneous singlet oxygen generation: in-operando visible light EPR spectroscopy. Environmental Science and Pollution Research. 28(20), 25124–25129 (2019)

    Google Scholar 

  48. Janzen, E.G., Wang, Y.Y.: Spin trapping with immobilized spin traps. poly (P [. alpha.-(N-tert-butylnitronyl)] styrene). J. Phys. Chem. 83, 894–896 (1979)

    CAS  Google Scholar 

  49. Kuno, N., Sakakibara, K., Hirota, M., Kogane, T.: A new polymer-incorporated spin-trapping reagent aimed at environmental use. Reactions with organic free radicals. React. Funct. Polym. 43, 43–51 (2000)

    CAS  Google Scholar 

  50. Earla, A., Walter, E.D., Braslau, R.: Synthesis and spin trapping properties of polystyrene supported trifluoromethylated cyclic nitrones. Free Radic. Res. 53, 1084–1100 (2019)

    CAS  Google Scholar 

  51. Khramtsov, V.V., Reznikov, V.A., Berliner, L.J., Litkin, A.K., Grigor’ev, I.A., Clanton, T.L.: NMR spin trapping: detection of free radical reactions with a new fluorinated DMPO analog. Free Radic. Biol. Med. 30, 1099–1107 (2001)

    CAS  Google Scholar 

  52. Chattopadhyay, M., Walter, E.D., Newell, D.J., Jackson, P.J., Aronoff-Spencer, E., Peisach, J., Gerfen, G.J., Bennett, B., Antholine, W.E., Millhauser, G.L.: The octarepeat domain of the prion protein binds Cu (II) with three distinct coordination modes at pH 7.4. J. Am. Chem. Soc. 127, 12647–12656 (2005)

    CAS  Google Scholar 

  53. Wang, F., Büchel, R., Savitsky, A., Zalibera, M., Widmann, D., Pratsinis, S.E., Lubitz, W., Schüth, F.: In situ EPR study of the redox properties of CuO–CeO2 catalysts for preferential CO oxidation (PROX). ACS Catal. 6, 3520–3530 (2016)

    CAS  Google Scholar 

  54. Prokopchuk, D.E., Chambers, G.M., Walter, E.D., Mock, M.T., Bullock, R.M.: H2 binding, splitting, and net hydrogen atom transfer at a paramagnetic iron complex. J. Am. Chem. Soc. 141, 1871–1876 (2019)

    CAS  Google Scholar 

  55. Aboukaïs, A., Bennani, A., Aïssi, C.F., Wrobel, G., Guelton, M., Vedrine, J.C.: Highly resolved electron paramagnetic resonance spectrum of copper (II) ion pairs in CuCe oxide. J. Chem. Soc. Faraday Trans. 88, 615–620 (1992)

    Google Scholar 

  56. Grauke, R., Schepper, R., Rabeah, J., Schoch, R., Bentrup, U., Bauer, M., Brückner, A.: Impact of Al activators on structure and catalytic performance of Cr catalysts in homogeneous ethylene oligomerization–a multitechnique in situ/operando study. ChemCatChem. 12(4), 1025–1035 (2020)

    CAS  Google Scholar 

  57. Morra, E., Martino, G.A., Piovano, A., Barzan, C., Groppo, E., Chiesa, M.: In situ X-and Q-band EPR investigation of ethylene polymerization on Cr/SiO2 Phillips catalyst. J. Phys. Chem. C. 122, 21531–21536 (2018)

    CAS  Google Scholar 

  58. Yin, L., Zhang, J., Yao, J., Li, H.: A designed tempo-derivate catalyst with switchable signals of EPR and photoluminescence: application in the mechanism of alcohol oxidation. ChemCatChem. 10, 3513–3519 (2018)

    CAS  Google Scholar 

  59. Qi, L., Chamas, A., Jones, Z.R., Walter, E.D., Hoyt, D.W., Washton, N.M., Scott, S.L.: Unraveling the dynamic network in the reactions of an alkyl aryl ether catalyzed by Ni/Γ-Al2O3 in 2-propanol. J. Am. Chem. Soc. 141, 17370–17381 (2019)

    CAS  Google Scholar 

  60. Walter, E.D., Qi, L., Chamas, A., Mehta, H.S., Sears, J.A., Scott, S.L., Hoyt, D.W.: Operando MAS NMR reaction studies at high temperatures and pressures. J. Phys. Chem. C. 122, 8209–8215 (2018)

    CAS  Google Scholar 

  61. Lu, Q., Zhang, J., Peng, P., Zhang, G., Huang, Z., Yi, H., Miller, J.T., Lei, A.: Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis. Chem. Sci. 6, 4851–4854 (2015)

    CAS  Google Scholar 

  62. Wang, Q., Zheng, J., Walter, E., Pan, H., Lv, D., Zuo, P., Chen, H., Deng, Z.D., Liaw, B.Y., Yu, X.: Direct observation of sulfur radicals as reaction media in lithium sulfur batteries. J. Electrochem. Soc. 162, A474–A478 (2015)

    CAS  Google Scholar 

  63. Ali, M.A., Hassan, A., Sedenho, G.C., Gonçalves, R.V., Cardoso, D.R., Crespilho, F.N.: Operando electron paramagnetic resonance for elucidating the electron transfer mechanism of coenzymes. J. Phys. Chem. C. 123, 16058–16064 (2019)

    CAS  Google Scholar 

  64. Neukermans, S., Hereijgers, J., Ching, H.V., Samanipour, M., Van Doorslaer, S., Hubin, A., Breugelmans, T.: A continuous in-situ EPR electrochemical reactor as a rapid in-depth mechanistic screening tool for electrocatalysis. Electrochem. Commun. 97, 42–45 (2018)

    CAS  Google Scholar 

  65. Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science. 321, 1072–1075 (2008)

    CAS  Google Scholar 

  66. Nefed’ev, E., Musin, K., Mirakova, T.Y., Kadirov, M., Aminov, K., Salikhov, K., Silaev, V.: EPR imaging study of paramagnetic centre distribution in thiokol-epoxy hermetics. Appl. Magn. Reson. 11, 115–123 (1996)

    Google Scholar 

  67. Ulbricht, K., Ewert, U., Herrling, T., Thiessenhusen, K., Aebli, G., Völter, J., Schneider, W.: EPR imaging on zeolites and zeolite catalysts. EPR Imag. In Vivo EPR, 241–250 (2018)

    Google Scholar 

  68. Spitzbarth, M., Scherer, A., Schachtschneider, A., Imming, P., Polarz, S., Drescher, M.: Time-, spectral-and spatially resolved EPR spectroscopy enables simultaneous monitoring of diffusion of different guest molecules in nano-pores. J. Magn. Reson. 283, 45–51 (2017)

    CAS  Google Scholar 

  69. Shevelev, G.Y., Krumkacheva, O.A., Lomzov, A.A., Kuzhelev, A.A., Rogozhnikova, O.Y., Trukhin, D.V., Troitskaya, T.I., Tormyshev, V.M., Fedin, M.V., Pyshnyi, D.V.: Physiological-temperature distance measurement in nucleic acid using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy. J. Am. Chem. Soc. 136, 9874–9877 (2014)

    CAS  Google Scholar 

  70. Meyer, V., Swanson, M.A., Clouston, L.J., Boratyński, P.J., Stein, R.A., Mchaourab, H.S., Rajca, A., Eaton, S.S., Eaton, G.R.: Room-temperature distance measurements of immobilized spin-labeled protein by DEER/PELDOR. Biophys. J. 108, 1213–1219 (2015)

    CAS  Google Scholar 

  71. Kuzhelev, A.A., Strizhakov, R.K., Krumkacheva, O.A., Polienko, Y.F., Morozov, D.A., Shevelev, G.Y., Pyshnyi, D.V., Kirilyuk, I.A., Fedin, M.V., Bagryanskaya, E.G.: Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: effect of substituents adjacent to no-group. J. Magn. Reson. 266, 1–7 (2016)

    CAS  Google Scholar 

  72. Cruickshank, P.A., Bolton, D.R., Robertson, D.A., Hunter, R.I., Wylde, R.J., Smith, G.M.: A kilowatt pulsed 94 Ghz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time. Rev. Sci. Instrum. 80, 103102 (2009)

    Google Scholar 

  73. Raitsimring, A., Astashkin, A., Enemark, J., Kaminker, I., Goldfarb, D., Walter, E., Song, Y., Meade, T.J.: Optimization of pulsed-DEER measurements for Gd-based labels: choice of operational frequencies, pulse durations and positions, and temperature. Appl. Magn. Reson. 44, 649–670 (2013)

    CAS  Google Scholar 

  74. Harchol, A., Reuveni, G., Ri, V., Thomas, B., Carmieli, R., Herber, R.H., Kim, C., Leskes, M.: Endogenous dynamic nuclear polarization for sensitivity enhancement in solid-state NMR of electrode materials. J. Phys. Chem. C. 124, 7082–7090 (2020)

    CAS  Google Scholar 

  75. Wenk, P., Kaushik, M., Richter, D., Vogel, M., Suess, B., Corzilius, B.: Dynamic nuclear polarization of nucleic acid with endogenously bound manganese. J. Biomol. NMR. 63, 97–109 (2015)

    CAS  Google Scholar 

  76. Wolf, T., Kumar, S., Singh, H., Chakrabarty, T., Aussenac, F., Frenkel, A.I., Major, D.T., Leskes, M.: Endogenous dynamic nuclear polarization for natural abundance 17O and lithium NMR in the bulk of inorganic solids. J. Am. Chem. Soc. 141, 451–462 (2018)

    Google Scholar 

  77. Mitchell, N., Kalber, T.L., Cooper, M.S., Sunassee, K., Chalker, S.L., Shaw, K.P., Ordidge, K.L., Badar, A., Janes, S.M., Blower, P.J.: Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials. 34, 1179–1192 (2013)

    CAS  Google Scholar 

  78. Boś-Liedke, A., Walawender, M., Woźniak, A., Flak, D., Gapiński, J., Jurga, S., Kucińska, M., Plewiński, A., Murias, M., Elewa, M.: EPR oximetry sensor—developing a tam derivative for in vivo studies. Cell Biochem. Biophys. 76, 19–28 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walter, E. (2023). Electron Paramagnetic Resonance (EPR). In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_38

Download citation

Publish with us

Policies and ethics