Skip to main content

Advertisement

Log in

Computation of Resonance Magnetic Fields of CW-EPR Spectra by Reversion of Power Series

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The linear relationship between the frequency of an EPR transition and the magnetic field, valid in the presence of only the Zeeman interaction, generally becomes nonlinear, when other interactions become operative. In such cases, obtaining accurate values of the resonance magnetic fields of a given spin system for simulating their EPR spectra, recorded at a fixed frequency, is not a trivial exercise. Because of its fundamental importance in the analysis of EPR spectra, there are several methods available in the literature to address this issue. These methods either use numerical techniques to compute the resonance fields from the resonance energies computed at various magnetic fields by diagonalization of the Hamiltonian matrix, or modify the Hamiltonian appropriately and resort to perturbation calculations. In this work, we have examined a method based on a mathematical technique of reversion of a power series, by which the resonance magnetic fields at a fixed frequency can be achieved in a relatively simple and straightforward manner. We have shown that, when the energy of an EPR transition can be expressed as a power series in powers of the magnetic field, obtained either from the analytical energy expression or by fitting the calculated energies to an empirical power series, a reversed power series in powers of the transition energy can be obtained to represent the resonance magnetic field. We have derived the necessary algebraic relationships between the coefficients of these two series. We have shown the success and usefulness of this method by applying it to calculate the resonance magnetic fields of well-studied EPR spectra of hydrogen atom, naphthalene triplet, and 6S state of Fe3+ in an octahedral crystalline electric field, at different frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In mathematical literature, a power series generally means a series involving only positive powers, as in Eq. 1. When negative powers are included, as in Eqs. 5 or 6, the series is called a Laurent series. In this work, however, we do not distinguish between the two, and call both of them power series.

References

  1. C.R. Byfleet, D.P. Chong, J.A. Hebden, C.A. McDowell, J. Magn. Reson. 2, 69 (1970)

    ADS  Google Scholar 

  2. G.G. Belford, R.L. Belford, J.F. Burkhalter, J. Magn. Reson. 11, 251 (1973)

    ADS  Google Scholar 

  3. K.T. McGregor, R.P. Scaringe, W.E. Hatfield, Mol. Phys. 30, 1925 (1975)

    Article  ADS  Google Scholar 

  4. M.I. Scullane, L.K. White, N.D. Chasteen, J. Magn. Reson. 47, 383 (1982)

    ADS  Google Scholar 

  5. A.S. Yang, B.J. Gaffney, Biophys. J. 51, 55 (1987)

    Article  Google Scholar 

  6. G.C.M. Gribnau, J.L.C. van Tits, E.J. Reijerse, J. Magn. Reson. 90, 474 (1990)

    ADS  Google Scholar 

  7. D. Nettar, J.J. Villafranca, J. Magn. Reson. 64, 61 (1985)

    ADS  Google Scholar 

  8. B.J. Gaffney, H.J. Silverstone, J. Magn. Reson. 134, 57 (1998)

    Article  ADS  Google Scholar 

  9. D. Collison, F.E. Mabbs, J. Chem. Soc. Dalton Trans. 1565 (1982)

  10. S. Stoll, A. Schweiger, Chem. Phys. Lett. 380, 464 (2003)

    Article  ADS  Google Scholar 

  11. S. Stoll, Computational modeling and least-squares fitting of EPR spectra, in Multifrequency electron paramagnetic resonance: data and techniques, ed. by S.K. Misra (Wiley-VCH, Weinheim, 2014), pp. 69–138

    Chapter  Google Scholar 

  12. J.O. Hirschfelder, W.B. Brown, S.T. Epstein, Recent developments in perturbation theory, in Advances in quantum chemistry, vol. 1, ed. by P.-O. Löwdin (Academic Press, New York, 1964), pp. 255–374

    Google Scholar 

  13. I. Mayer, Simple theorems, proofs, and derivations in quantum chemistry (Kluwer Academic/Plenum Publishers, New York, 2003), pp. 323–324

    Book  Google Scholar 

  14. A. Rockenbauer, P. Simon, J. Magn. Reson. 11, 217 (1973)

    ADS  Google Scholar 

  15. M. Iwasaki, J. Magn. Reson. 16, 417 (1974)

    ADS  Google Scholar 

  16. Y. Teki, T. Takui, K. Itoh, J. Chem. Phys. 88, 6134 (1988)

    Article  ADS  Google Scholar 

  17. Y. Teki, I. Fujita, T. Takui, T. Kinoshita, K. Itoh, J. Am. Chem. Soc. 116, 11499 (1994)

    Article  Google Scholar 

  18. F.E. Mabbs, D. Collision, Electron paramagnetic resonance of d transition metal compounds (Elsevier, Amsterdam, 1992), p. 134

    Google Scholar 

  19. T. Yamane, K. Sugisaki, T. Nakagawa, H. Matsuoka, T. Nishio, S. Kinjyo, N. Mori, S. Yokoyama, C. Kawashima, N. Yokokura, K. Sato, Y. Kanzaki, D. Shiomi, K. Toyota, D.H. Dolphin, W.-C. Lin, C.A. McDowell, M. Tadokoroc, T. Takui, Phys. Chem. Chem. Phys. 19, 24769 (2017)

    Article  Google Scholar 

  20. T. Yamane, K. Sugisaki, H. Matsuoka, K. Sato, K. Toyota, D. Shiomia, T. Takui, Dalton Trans. 47, 16429 (2018)

    Article  Google Scholar 

  21. M. Abramowitz, I.A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, 10th printing (National Bureau of Standards, Washington, DC, 1972), p. 16. (entry 3.6.25)

    MATH  Google Scholar 

  22. S.M. Selby (ed.), CRC standard mathematical tables, 18th edn. (The Chemical Rubber Company, Cleveland, 1970), p. 454

    Google Scholar 

  23. G.B. Arfken, H.J. Weber, Mathematical methods for physicists, 4th edn. (Prism Books, Bangalore, 1995), p. 326

    MATH  Google Scholar 

  24. H. Chernoff, Math. Comp. 2, 331 (1947)

    Article  Google Scholar 

  25. J.A. Weil, J.R. Bolton, Electron paramagnetic resonance: elementary theory and practical applications, 2nd edn. (Wiley-Interscience, New Jersey, 2007)

    Google Scholar 

  26. C.A. Hutchison Jr., B.W. Mangum, J. Chem. Phys. 34, 908 (1961)

    Article  ADS  Google Scholar 

  27. M.S. de Groot, J.H. van der Waals, Mol. Phys. 6, 545 (1963)

    Article  ADS  Google Scholar 

  28. P. Debye, Ann. Phys. 32, 85 (1938)

    Article  Google Scholar 

  29. R. de L. Kronig, C.J. Bouwkamp, Physica 6, 290 (1939)

    Article  ADS  Google Scholar 

  30. J.E. Wertz, J.R. Bolton, Electron spin resonance: elementary theory and practical applications (McGraw-Hill, New York, 1972)

    Google Scholar 

  31. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in C: the art of scientific computing, 2nd edn. (Cambridge University Press, Cambridge, 1992), pp. 671–675

    MATH  Google Scholar 

  32. M.F. González-Cardel, R. Díaz-Uribe, Rev. Mex. Fís. E 52, 163 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rane, V., Das, R. Computation of Resonance Magnetic Fields of CW-EPR Spectra by Reversion of Power Series. Appl Magn Reson 50, 1001–1023 (2019). https://doi.org/10.1007/s00723-019-01128-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01128-6

Navigation