Skip to main content

Advertisement

Log in

The Power of EPR Techniques in Investigating Functionalization and Penetration into Fibers of Cotton-Bound Antimicrobial Peptides

  • Original Article
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The development of protective and safe textiles is of fundamental importance for defending the human body from bacterial infections. To this aim, garments are often functionalized with antibacterial agents. We recently started a program aimed at covalently linking antimicrobial peptides to cotton tissues. To optimize the process of binding, it is necessary to know the degree of functionalization and how deeply peptides penetrate into the cotton fiber. Here, we present a spin-label electron paramagnetic resonance (EPR) approach for obtaining data on the peptide incorporation into the fibers. The approach is based on the line broadening in conventional EPR and on the signal decays in electron spin echo spectroscopy that is a pulsed version of EPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Borkow, J. Gabbay, Med. Hypoth. 70, 990–994 (2008)

    Article  Google Scholar 

  2. D. Coman, S. Oancea, N. Vrînceanu, Rom. Biotech. Lett. 15, 4913–4921 (2010)

    Google Scholar 

  3. G. Sun, in Polymeric Materials with Antimicrobial Activity: From Synthesis to Applications (The Royal Society of Chemistry, Cambridge, 2014), pp. 139–155

  4. A. Orlandin, F. Formaggio, A. Toffoletti, C. Peggion, J. Pept. Sci. 20, 547–553 (2014)

    Article  Google Scholar 

  5. M. Pedrosa, C. Mouro, F. Nogueira, J. Vaz, I. Gouveia, J. Appl. Polym. Sci. 131, 40997 (2014)

    Article  Google Scholar 

  6. A.P. Gomes, J.F. Mano, J.A. Queiroz, I.C. Gouveia, Carbohydr. Polym. 127, 451–461 (2015)

    Article  Google Scholar 

  7. J.V. Edwards, K.R. Fontenot, N.T. Prevost, N. Pircher, F. Liebner, B.D. Condon, Sensors (2016). doi:10.3390/s16111789

    Google Scholar 

  8. A.M. Pekkanen, R.J. Mondschein, D. Guenette, N. Mohaptra, T.E. Long, Int. J. Adhes. Adhes. 75, 17–22 (2017)

    Article  Google Scholar 

  9. D. Roversi, V. Luca, S. Aureli, Y. Park, M.L. Mangoni, L. Stella, ACS Chem. Biol. 9, 2003–2007 (2014)

    Article  Google Scholar 

  10. N.B. da Cunha, N.B. Cobacho, J.F.C. Viana, L.A. Lima, K.B.O. Sampaio, S.S.M. Dohms, A.C.R. Ferreira, C. de la Fuente-Nunez, F.F. Costa, O.L. Franco, S.C. Dias, Drug Discov. Today 22, 234–248 (2017)

    Article  Google Scholar 

  11. E.S. Salnikov, D.A. Erilov, A.D. Milov, Y.D. Tsvetkov, C. Peggion, F. Formaggio, C. Toniolo, J. Raap, S.A. Dzuba, Biophys. J. 91, 1532–1540 (2006)

    Article  ADS  Google Scholar 

  12. V.N. Syryamina, M. De Zotti, C. Peggion, F. Formaggio, C. Toniolo, J. Raap, S.A. Dzuba, J. Phys. Chem. B 116, 5653–5660 (2012)

    Article  Google Scholar 

  13. A.D. Milov, Y.D. Tsvetkov, J. Raap, M. De Zotti, F. Formaggio, C. Toniolo, Biopolymers 106, 6–24 (2016)

    Article  Google Scholar 

  14. C. Toniolo, H. Brückner (eds.), Peptaibiotics: Fungal Peptides Containing α-Dialkyl α-Amino Acids (Verlag Helvetica Chimica Acta, Wiley-VCH, Zurich, Weinheim, 2009)

    Google Scholar 

  15. H. Duclohier, Curr. Pharm. Desig. 16, 3212–3223 (2010)

    Article  Google Scholar 

  16. G. Bocchinfuso, A. Palleschi, B. Orioni, G. Grande, F. Formaggio, C. Toniolo, Y. Park, K.-S. Hahm, L. Stella, J. Pept. Sci. 15, 550–558 (2009)

    Article  Google Scholar 

  17. N.K.N. Neumann, N. Stoppacher, S. Zeilinger, T. Degenkolb, H. Brückner, R. Schuhmacher, Chem. Biodivers. 12, 743–751 (2015)

    Article  Google Scholar 

  18. A. Makovitzki, D. Avrahami, Y. Shai, Proc. Natl. Acad. Sci. USA 103, 15997–16002 (2006). doi:10.1073/pnas.0606129103

    Article  ADS  Google Scholar 

  19. A. Vallon-Eberhard, A. Makovitzki, A. Beauvais, J.P. Latge, S. Jung, Y. Shai, Antimicrob. Agents Chemother. 52, 3118–3126 (2008). doi:10.1128/AAC.00526-08

    Article  Google Scholar 

  20. A. Dalla Bona, F. Formaggio, C. Peggion, B. Kaptein, Q.B. Broxterman, S. Galdiero, M. Galdiero, M. Vitiello, M. Benedetti, C. Toniolo, J. Pept. Sci. 12, 748–757 (2006)

    Article  Google Scholar 

  21. C. Mouro, M. Pedrosa, J. Vaz, I. Gouveia, J. Res. 1, 27–33 (2014)

    Google Scholar 

  22. X.M. He, G.T. Zhu, Y.Y. Zhu, X. Chen, Z. Zhang, S.T. Wang, B.F. Yuan, Y.Q. Feng, A.C.S. Appl. Mater. Interf. 6, 17857–17864 (2014)

    Article  Google Scholar 

  23. M. Nakamura, T. Iwasaki, S. Tokino, A. Asaoka, M. Yamakawa, J. Ishibashi, Biomacromolecules 12, 1540–1545 (2011)

    Article  Google Scholar 

  24. M.D. Rabenstein, Y.-K. Shin, Proc. Natl. Acad. Sci. USA 92, 8239–8243 (1995)

    Article  ADS  Google Scholar 

  25. J.R. Klauder, P.W. Anderson, Phys. Rev. 125, 912–932 (1962)

    Article  ADS  Google Scholar 

  26. R.I. Samoilova, A.M. Raitsimring, Y.D. Tsvetkov, Radiat. Phys. Chem. 15, 553–559 (1980)

    ADS  Google Scholar 

  27. K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42, 255–276 (1981)

    ADS  Google Scholar 

  28. A.M. Raitsimring, V.V. Tregub, Chem. Phys. 77, 123–130 (1983)

    Article  ADS  Google Scholar 

  29. A.M. Raitsimring, K.M. Salikhov, Bull. Magn. Reson. 7, 184–217 (1985)

    Google Scholar 

  30. A. Raitsimring, in Biological Magnetic Resonance, vol. 19, ed. by L.J. Berliner, G. R. Eaton, S.A. Eaton (Kluwer/Plenum Publishers, New York, 2002), pp. 461–491

  31. Y.V. Toropov, S.A. Dzuba, Y.D. Tsvetkov, V. Monaco, F. Formaggio, M. Crisma, C. Toniolo, J. Raap, Appl. Magn. Reson. 15, 237–246 (1998)

    Article  Google Scholar 

  32. D.A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S.A. Dzuba, L. Sportelli, J. Phys. Chem. B 108, 4501–4507 (2004)

    Article  Google Scholar 

  33. E.P. Kirilina, S.A. Dzuba, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 21, 203–221 (2001)

    Article  Google Scholar 

  34. D.A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S.A. Dzuba, L. Sportelli, Biophys. J. 87, 3873–3881 (2004)

    Article  Google Scholar 

  35. N.P. Isaev, S.A. Dzuba, J. Phys. Chem. B 112, 13285–13291 (2008)

    Article  Google Scholar 

  36. M.E. Kardash, S.A. Dzuba, J. Phys. Chem. B 121, 5209–5217 (2017)

    Article  Google Scholar 

  37. S.J. Farlow, Partial Differential Equations for Scientists and Engineers (Wiley, New York, 1982)

    MATH  Google Scholar 

  38. A.D. Milov, R.I. Samoilova, Y.D. Tsvetkov, C. Peggion, F. Formaggio, C. Toniolo, J. Phys. Chem. B 118, 7085–7090 (2014)

    Article  Google Scholar 

  39. V.N. Syryamina, R.I. Samoilova, Y.D. Tsvetkov, A.V. Ischenko, M. De Zotti, M. Gobbo, C. Toniolo, F. Formaggio, S.A. Dzuba, Appl. Magn. Reson. 47, 309–320 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, Project #15-15-00021; SEM diagnostics was supported by the Russian Science Foundation, Project #14-22-00143.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Dzuba or C. Peggion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzuba, S.A., Uvarov, M.N., Utkin, D.E. et al. The Power of EPR Techniques in Investigating Functionalization and Penetration into Fibers of Cotton-Bound Antimicrobial Peptides. Appl Magn Reson 48, 943–953 (2017). https://doi.org/10.1007/s00723-017-0917-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0917-6

Navigation