Skip to main content
Log in

Brain Imaging with Slotted Hybridized Magnetic Metamaterial Hat at 7-T MRI

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Study of human pathologies and acquisition of anatomical images without any surgical intervention inside human body is possible because of magnetic resonance imaging (MRI), which is the keystone technique to characterize the psychology and neurochemistry of human body. However, for clinical trials, the study and cure of human diseases are followed by medical investigations of different animal anatomies. By employing different imaging techniques to animal anatomical models during their clinical trials yielded in exceptional image acquisition without any surgical invasion in the model, which resulted in noninvasive technique as compared to surgical invasion and opened the possibility to study human pathologies more precisely. This work exploits the notable properties of unique combination of multi-circular hybridized surface coils which can be used as hybridized magnetic metamaterial hat (HMMH). HMMH not only strengthens the uniformity of radio frequency (RF) rotational symmetry around its axis but also improves the signal-to-noise ratio (SNR) for rat’s brain imaging at 7-T MRI. We analyzed a periodic array of strongly coupled circular copper coils attached on circular coil shaped printed circuit board (PCB) substrate. In the design, some copper coils were inspired by the slot cavity loaded with parametric elements (capacitor and inductor). In addition, coils in the form of HMMH exploited the advantages of the hybrid modes which exhibited better and deeper RF sensitivity into the region of interest (ROI) as compared to single loop RF coil by exciting two Eigen modes simultaneously which resulted in homogenized magnetic field (B-field) and enhanced SNR at ROI. At resonance, the value of relative negative permeability, μ r  = −7 + j11 was achieved at 300 MHz for 7-T MRI. Furthermore, image quality at ROI was optimized by varying rat’s head position under magnetic resonance (MR) coil of MRI apparatus and in the presence or absence of HMMH. Design configuration and circuit model analysis were also done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.C. Lauterbur, Nature 242, 190–191 (1973)

    Article  ADS  Google Scholar 

  2. W.R. Hendee, Rev. Mod. Phys. 71, S444 (1999)

    Article  Google Scholar 

  3. N.K. Logothetis,  Nature (London) 453, 869–878 (2008)

    Article  ADS  Google Scholar 

  4. D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. Sunshine, J. Duerk, M. Griswold, Nature 495, 187–192 (2013)

    Article  ADS  Google Scholar 

  5. C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, D. Rugar, PNAS 106, 1313–1317 (2009)

    Article  ADS  Google Scholar 

  6. E.M. Haacke, R.W. Brown, R. Venkatesan, Magnetic Resonance Imaging: Principles and Sequence Design (Wiley, Hoboken, 1999)

    Google Scholar 

  7. T. Vaughan, L. DelaBarre, C. Snyder, J. Tian, C. Akgun, D. Shrivastava, P. Anderson, Magn. Reson. Med. 56, 1274–1282 (2006)

    Article  Google Scholar 

  8. C. Jouvaud, R. Abdeddaim, B. Larrat, J. de Rosny, Appl. Phys. Lett. 108, 023503 (2016)

    Article  ADS  Google Scholar 

  9. R.J. Stafford, Med. Phys. 32, 2077 (2005)

    Article  Google Scholar 

  10. D.K. Sodickson, W.J. Manning, Magn. Reson. Med. 38, 591–603 (1997)

    Article  Google Scholar 

  11. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42, 952–962 (1999)

    Article  Google Scholar 

  12. P.B. Roemer, W.A. Edelstein, C.E. Hayes, S.P. Souza, O.M. Mueller, Magn. Reson. Med. 16, 192–225 (1990)

    Article  Google Scholar 

  13. D. Brunner, N. De Zanchei, J. Frohlich, J. Paska, K. Pruessmann, Nature 457, 994–998 (2009)

    Article  ADS  Google Scholar 

  14. A. Andreychenko, H. Kroeze, D.W. Klomp, J.J. Lagendijk, P.R. Luijten, C.A. den Berg, Magn. Reson. Med. 70, 875–884 (2013)

    Article  Google Scholar 

  15. V. Kuperman, Magnetic Resonance Imaging. Physical Principles and Applications (Academic Press, San Diego, 2000)

    Google Scholar 

  16. D. Hogemann, L. Josephson, R. Weissleder, J.P. Basilion, Bioconjugate Chem. 11, 941–946 (2000)

    Article  Google Scholar 

  17. P. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, Y. Hao, Appl. Phys. Lett. 89, 262109 (2006)

    Article  ADS  Google Scholar 

  18. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  19. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 794–799 (2004)

    Article  ADS  Google Scholar 

  20. J.D. Baena, L. Jelinek, R. Marqués, M. Silveirinha, Phys. Rev. A 78, 013842 (2008)

    Article  ADS  Google Scholar 

  21. N. Engheta, R.W. Ziolkowski (eds.), Metamaterials: Physics and Engineering Explorations (Wiley, Hoboken, 2006)

    Google Scholar 

  22. W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010)

    Book  Google Scholar 

  23. M. Freire, R. Marqués, L. Jelinek, Appl. Phys. Lett. 93, 231108 (2008)

    Article  ADS  Google Scholar 

  24. R. Marques, F. Mesa, J. Martel, F. Medina, IEEE Trans. Antennas Propag. 51, 2572–2581 (2003)

    Article  ADS  Google Scholar 

  25. H. Ali, E. Forsberg, H. Jun, Appl. Magn. Reson. 47, 1–16 (2016)

    Article  Google Scholar 

  26. R.R.A. Syms, T. Floume, I. Young, L. Solymar, M. Rea, Metamaterials 4, 1–14 (2010)

    Article  ADS  Google Scholar 

  27. X. Radu, D. Garray, C. Craeye, Metamaterials 3, 90–99 (2009)

    Article  ADS  Google Scholar 

  28. S.E. Solis, R. Wang, D. Tomasi, A.O. Rodriguez, Phys. Med. Biol. 56, 3551 (2011)

    Article  Google Scholar 

  29. C.E. Hayes, W.A. Edelstein, J.F. Schenck, O.M. Mueller, M. Eash, J. Magn. Reson. 63, 622–628 (1985)

    ADS  Google Scholar 

  30. U. Katscher, P. Börnert, NMR Biomed. 19, 393–400 (2006)

    Article  Google Scholar 

  31. S. Babic, C. Akyel, IEEE Trans. Magn. 44, 445–452 (2008)

    Article  ADS  Google Scholar 

  32. V.A. Podolskiy, N.A. Kuhta, W.G. Milton, Appl. Phys. Lett. 87, 231113 (2005)

    Article  ADS  Google Scholar 

  33. D.F. Sievenpiper, M.E. Sickmiller, E. Yablonovitch, Phys. Rev. Lett. 76, 2480 (1996)

    Article  ADS  Google Scholar 

  34. R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory and Microwave Applications (Wiley, New York, 2008)

    Google Scholar 

  35. R. Abdeddaim, A. Ourir, J. de Rosny, Phys. Rev. B 83, 033101 (2011)

    Article  ADS  Google Scholar 

  36. X.D. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco Jr, J.A. Kong, Phys. Rev. E. 70, 016608 (2004)

    Article  ADS  Google Scholar 

  37. S. Maslovski, S. Tretyakov, P. Alitalo, J. Appl. Phys. 96, 1293–1300 (2004)

    Article  ADS  Google Scholar 

  38. R.R.A. Syms, L. Solymar, I.R. Young, Metamaterials 2, 122–134 (2008)

    Article  ADS  Google Scholar 

  39. O. Sydoruk, E. Shamonina, L. Solymar, J. Phys. D Appl. Phys. 40, 6879 (2007)

    Article  ADS  Google Scholar 

  40. K. Hadjicosti, O. Sydoruk, S.A. Maier, E. Shamonina, J. Phys. 16, 163910 (2015)

    Google Scholar 

  41. M.E. Van Valkenburg, Network Analysis (Prentice-Hall, London, 1958)

    MATH  Google Scholar 

  42. L. Jelinek, R. Marques, M. Freire, J. Appl. Phys. 105, 024907 (2009)

    Article  ADS  Google Scholar 

  43. M. Lapine, L. Jelinek, R. Marqués, M. Freire, IET Microw. Antennas Propag. 4, 1132–1139 (2010)

    Article  Google Scholar 

  44. G. Kim, B. Lee, J. Electromagn. Eng. Sci. 16(2), 67–73 (2016)

    Article  Google Scholar 

  45. S.H. Hall, H.L. Heck, Advanced Signal Integrity for High-Speed Digital Designs (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  46. C.A. Balanis, Advanced Engineering Electromagnetics, 2nd edn. (Wiley, Hoboken, 2012)

    Google Scholar 

  47. D.G. Reed, ARRL Handbook for Radio Communications, 82nd edn. (American Radio Relay League, Newington, 2005)

    Google Scholar 

  48. S.C. Thierauf, High-Sspeed Circuit Board Signal Integrity (Artech House, Norwood, 2004)

    Google Scholar 

  49. W. Wensong, Y. Chen, S. Yang, X. Zheng, Q. Cao, J. Electromagn. Waves Appl. 29, 2080–2091 (2015)

    Article  Google Scholar 

  50. S. Tan,F. Yan, L. Sing, W. Cao, N. Xu, Opt. Express 23, 29222–29230 (2015)

    Article  ADS  Google Scholar 

  51. J.M. Algarin, M.A. Lopez, M.J. Freire, R. Marques, New J. Phys. 13, 115006 (2011)

    Article  ADS  Google Scholar 

  52. D.I. Hoult, R.E. Richards, J. Magn. Reson. 24, 71–85 (1976)

    ADS  Google Scholar 

  53. M. Freire, L. Jelinek, R. Marqués, M. Lapine, J. Magn. Reson. 203, 81–90 (2010)

    Article  ADS  Google Scholar 

  54. W.A. Edelstein, G.H. Glover, C.J. Hardy, R.W. Redington, Magn. Reson. Med. 3, 604–618 (1986)

    Article  Google Scholar 

  55. F.B. Rosa, F.W. Grover, Bulletin of the Bureau of Standards (Government Printing Office, Washington, 1948)

    Google Scholar 

  56. L.D. Landau, E.M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

    Google Scholar 

  57. N.R.V. Nightingale, V.D. Goodridge, R.J. Sheppard, J.L. Christie, Phys. med. biol. 28(8), 897 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the partial supports from NSFCs 61271085 (National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Forsberg, E. & Jun, H. Brain Imaging with Slotted Hybridized Magnetic Metamaterial Hat at 7-T MRI. Appl Magn Reson 48, 67–83 (2017). https://doi.org/10.1007/s00723-016-0848-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0848-7

Keywords

Navigation