Skip to main content
Log in

Modeling of Electrically Triggered Tunable Magnetic Metamaterial Hat for Multifunctional Control in MRI Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Acquisition of images without surgical interposition into human body was possible due to magnetic resonance imaging (MRI) mechanism. We introduced noteworthy properties of specific combination of copper surface coils as tunable hybridized magnetic metamaterial hat (THMMH). In THMMH, some of the surface coil slots were loaded with capacitor elements and parallel merger of discrete edge ports as externally applied sinusoidal steady-state current source (IS). We highlighted the significance of IS, as it could make the design tunable and reconfigurable without any requirement of it being re-designed/re-fabricated. Efficiency comparison between THMMH and previously reported work (un-tunable hybridized magnetic metamaterial hat, HMMH) was analyzed. We concluded that THMMH exhibited better magnetic field (B-field) and SNR into region of interest (ROI) at the rat’s brain, as well as shown strong resonance in comparison to previously reported work on the rat’s brain imaging for 7-T MRI. In addition, THMMH excited two eigenmodes simultaneously, which exploited its properties as hybridized magnetic material. Furthermore, relative negative permeability, μr = − 3.5+j20.2 for THMMH as case I and μr = − 5.5+j36.3 for un-tunable HMMH as case II were achieved at 300 MHz for 7-T MRI and for comparison purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  2. Hendee WR (1999) Physics and applications of medical imaging. Rev Mod Phys 71:S444–S450

    Article  Google Scholar 

  3. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature (London) 453:869–878

    Article  CAS  Google Scholar 

  4. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine J, Duerk J, Griswold M (2013) Magnetic resonance fingerprinting. Nature 495:187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D (2009) Nanoscale magnetic resonance imaging. PNAS 106:1313–1317

    Article  PubMed  Google Scholar 

  6. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design (vol 82). Wiley-liss, New York

  7. Vaughan T, DelaBarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Anderson P (2006) 9.4 T human MRI: preliminary results. Magn Reson Med 56:1274–1282

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jouvaud C, Abdeddaim R, Larrat B, de Rosny J (2016) Volume coil based on hybridized resonators for magnetic resonance imaging. Appl Phys Lett 108:023503

    Article  CAS  Google Scholar 

  9. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  10. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) Coil sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  11. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225

    Article  CAS  PubMed  Google Scholar 

  12. Brunner D, De Zanchei N, Frohlich J, Paska J, Pruessmann K (2009) Travelling-wave nuclear magnetic resonance. Nature 457:994–998

    Article  CAS  PubMed  Google Scholar 

  13. Ali H, Jun H, Abbas A, Tariq M et al (2017) −μ compact magnetic metamaterial lens for 0.35-T MRI. J Opt 46:436–445

    Article  Google Scholar 

  14. Kuperman V (2000) Magnetic resonance imaging. Physical Principles and Applications. Academic Press, San Diego

    Google Scholar 

  15. Hogemann D, Josephson L, Weissleder R, Basilion JP (2000) Improvement of MRI probes to allow efficient detection of gene expression. Bioconjug Chem 11:941–946

    Article  CAS  PubMed  Google Scholar 

  16. Stafford RJ (2005) TU-B-I-617-01: high field MRI—technology, applications, safety, and limitations. Med Phys 32(6):2077–2077

    Article  Google Scholar 

  17. Solis SE, Wang R, Tomasi D, Rodriguez AO (2011) A multi-slot surface coil for MRI of dual-rat imaging at 4 T. Phys Med Biol 56:3551–3561

    Article  CAS  PubMed  Google Scholar 

  18. Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M (1985) An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Res 63:622–628

    CAS  Google Scholar 

  19. Katscher U, ornert PB€ (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400

    Article  PubMed  Google Scholar 

  20. Belov P, Zhao Y, Sudhakaran S, Alomainy A, Hao Y (2006) Experimental study of the sub-wavelength imaging by a wire medium slab. Appl Phys Lett 89:262109

    Article  CAS  Google Scholar 

  21. Pendry JB (2000) Negative refraction makes perfect lens. Phys Rev Lett 85:3966–3969

    Article  CAS  PubMed  Google Scholar 

  22. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:794–799

    Article  PubMed  Google Scholar 

  23. Baena JD, Jelinek L, Marques R, Silveirinha M (2008) Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials. Phys Rev A 78:013842

    Article  CAS  Google Scholar 

  24. Engheta N, Ziolkowski RW (eds.) (2006) Metamaterials: physics and engineering explorations. John Wiley & Sons, Hoboken

  25. Cai W, Shalaev V (2010) Optical metamaterials: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  26. Freire M, Marqués R, Jelinek L (2008) Experimental demonstration of a μ=− 1 metamaterial lens for magnetic resonance imaging. Appl Phys Lett 93:231108

    Article  CAS  Google Scholar 

  27. Marques R, Mesa F, Martel J, Medina F (2003) Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments. IEEE Trans Antennas Propag 51:2572–2581

    Article  Google Scholar 

  28. Ali H, Forsberg E, Jun H (2016) Sub-wavelength imaging with BC-SRRs metamaterial lens for 1.5-T MRI. Appl Magn Reson 47:539–554

    Article  Google Scholar 

  29. syms RRA, Floume T, Young I, Solymar L, Rea M (2010) Flexible magnetoinductive ring MRI detector: design for invariant nearest-neighbour coupling. Meta 4:1–14

  30. Radu X, Garray D, Craeye C (2009) Toward a wire medium endoscope for MRI imaging. Meta 3:90–99

    Google Scholar 

  31. Ali H, Forsberg E, Jun H (2017) Brain imaging with slotted hybridized magnetic metamaterial hat at 7-T MRI. Appl Magn Reson 48(1):67–83

  32. Liu L, Kang L, Mayer TS, Werner DH (2016) Hybrid metamaterials for electrically triggered multifunctional control. Nature Comm 7:13236

  33. Zheludev NI, Plum E (2016) Reconfigurable nanomechanical photonic metamaterials. Nature Nano Tech 11:16–22

    Article  CAS  Google Scholar 

  34. Babic S, Akyel C (2008) Magnetic force calculation between thin coaxial circular coils in air. Mag IEEE Trans 44:445–452

    Article  Google Scholar 

  35. Brillouin L (1960) Wave propagation and group velocity. Academic press, New York and London

    Google Scholar 

  36. https://www.rigolna.com/products/waveform-generators/dg5000/

  37. Aprille JT, Timothy NT (1972) Steady-state analysis of nonlinear circuits with periodic inputs. Proc IEEE 60(1):108–114

    Article  Google Scholar 

  38. Podolskiy VA, Kuhta NA, Milton WG (2005) Optimizing the superlens: manipulating geometry to enhance the resolution. Appl Phys Lett 87:231113

    Article  CAS  Google Scholar 

  39. Sievenpiper DF, Sickmiller ME, Yablonovitch E (1996) 3D wire mesh photonic crystals. Phys Rev Lett 76:2480–2483

    Article  CAS  PubMed  Google Scholar 

  40. Marqués R, Martín F, Sorolla M (2008) Metamaterials with negative parameters: theory and microwave applications. Wiley & Sons Inc., Hoboken

    Google Scholar 

  41. Abdeddaim R, Ourir A, de Rosny J (2011) Realizing a negative index metamaterial by controlling hybridization of trapped modes. Phys Rev B 83:033101

    Article  CAS  Google Scholar 

  42. Syms RRA, Solymar L, Young IR (2008) Three-frequency parametric amplification in magneto-inductive ring resonators. Meta 2:122–134

    Google Scholar 

  43. Sydoruk O, Shamonina E, Solymar L (2007) Parametric amplification in coupled magnetoinductive waveguides. J Phys D Appl Phys 40:6879–6887

    Article  CAS  Google Scholar 

  44. Hadjicosti K, Sydoruk O, Maier SA, Shamonina E (2015) Surface polaritons in magnetic metamaterials from perspective of effective-medium and circuit models. J Appl Phys 16:163910

    Article  CAS  Google Scholar 

  45. Valkenburg V (1958) Network analysis. Prentice-Hall, London

    Google Scholar 

  46. Lapine M, Jelinek L, Marqués R, Freire M (2010) Exact modelling method for discrete finite metamaterial lens. IET Microw Antennas Propag 4:1132–1139

    Article  Google Scholar 

  47. Kim G, Lee B (2016) Synthesis of bulk medium with negative permeability using ring resonators. J Electro Magn Engg Sci 16(2):67–73

    Article  Google Scholar 

  48. Hall SH, Heck HL (2009) Advanced signal integrity for high-speed digital designs. Hoboken Wiley, New Jersey

    Book  Google Scholar 

  49. Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, Hoboken

    Google Scholar 

  50. Reed DG (2005) ARRL handbook for radio Communications, 82nd edn. American Radio Relay League, Newington

    Google Scholar 

  51. Thierauf SC (2004) High-speed circuit board signal integrity. Artech House, Norwood, MA

    Google Scholar 

  52. Wensong W, Chen Y, Yang S, Zheng X, Cao Q (2015) Design of a broadband electromagnetic wave absorber using a metamaterial technology. J Electromagn Waves and Appl 29:2080–2091

    Article  Google Scholar 

  53. Tan S, Yan F, Sing L, Cao W, Xu N, Hu X, Zhang W (2015) Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling. Opt Express 23(22):29222–29230

    Article  CAS  PubMed  Google Scholar 

  54. Chen XD, Grzegorczyk TM, Wu BI, Pacheco J Jr, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70:016608

    Article  CAS  Google Scholar 

  55. Maslovski S, Tretyakov S, Alitalo P (2004) Near-field enhancement and imaging in double planar polariton-resonant structures. J Appl Phys 96:1293–1300

    Article  CAS  Google Scholar 

  56. Algarin JM, Lopez MA, Freire MJ, Marques R (2011) Signal-to-noise ratio evaluation in resonant ring metamaterial lenses for MRI applications. New J Phys 13:115006

    Article  CAS  Google Scholar 

  57. Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85

    Google Scholar 

  58. Ali H, Forsberg E, Jun H (2017) 0 μ magnetic polarizer for 1.5-T MRI. J Electr Electron Syst 6:242

    Article  Google Scholar 

  59. Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR. Reson Med 3:604–618

    Article  CAS  Google Scholar 

  60. Rosa FB, Grover FW (1948) Formulas and tables for calculation of mutual and self-inductance. Bureau of Standards. Government Printing Office, Washington

    Google Scholar 

  61. Landau LD, Lifschitz EM (1984) Electrodynamics of continuous media. Pergamon Press, Oxford

    Google Scholar 

  62. Nightingale NRV, Goodridge VD, Sheppard RJ, Christie JL (1983) The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys Med Biol 28(8):897

Download references

Funding

The author is grateful for the partial supports from NSFC 61271085 (National Natural Science Foundation of China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H. Modeling of Electrically Triggered Tunable Magnetic Metamaterial Hat for Multifunctional Control in MRI Applications. Plasmonics 14, 91–107 (2019). https://doi.org/10.1007/s11468-018-0781-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0781-8

Keywords

Navigation