Skip to main content
Log in

Metamaterial Magnetic Sheet at 3.7-T MRI for Animal Imaging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Animal models have been utilized for many decades to examine human diseases and symptoms via magnetic resonance imaging (MRI) techniques. To avoid the fatal effects of the strong static magnetic field (B0) when imaging the mouse brain at higher Tesla values in MRI, i.e., 7-T, we propose a compact metamaterial magnetic sheet which can improve the image resolution for simulation of the mouse brain even at lower Tesla values in MRI systems. The magnetic sheet operates at 3.7-T MRI working frequency and provides a passband within its interfaces to restore the formation of scattering of an evanescent radio-frequency (RF) field radiating from the MRI gradient coils towards the sheet. We show in the optimized simulated test bed setup that the magnetic sheet localizes and adjusts the response of the evanescent RF field and improves the transient transverse magnetic field B1 and signal-to-noise ratio at the designated region of interest, i.e., mouse brain (Mb), where B1 at the mouse brain is the response of the static magnetic field B0 generated by the magnetic resonance gradient coils. The unique concept proposed here is that negative permeability (−μ) controls the metamaterial magnetic sheet to improve image resolution inside the human brain without increasing B0 intensity at the brain, in order to avoid thermal heating of the brain tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).

    Google Scholar 

  2. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    CAS  Google Scholar 

  3. S.E. Solis, R. Wang, D. Tomasi, and A.O. Rodriguez, Phys. Med. Biol. 56, 3551 (2011).

    CAS  Google Scholar 

  4. I. Osorio, S.E. Solis-Najera, F. Vázquez, R.L. Wang, D. Tomasi, and A.O. Rodriguez, Proc. AIP. Conf. 1626, 159 (2014).

    Google Scholar 

  5. C. Jouvaud, R. Abdeddaim, B. Larrat, and J. de Rosny, Appl. Phys. Lett. 108, 023503 (2016).

    Google Scholar 

  6. P.C. Lauterbur, Nature 242, 190 (1973).

    CAS  Google Scholar 

  7. W.R. Hendee, Rev. Mod. Phys. 71, S444 (1999).

    Google Scholar 

  8. N.K. Logothetis, Nature (London) 453, 869 (2008).

    CAS  Google Scholar 

  9. D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. Sunshine, J. Duerk, and M. Griswold, Nature 495, 187 (2013).

    CAS  Google Scholar 

  10. C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, and D. Rugar, PNAS 106, 1313 (2009).

    CAS  Google Scholar 

  11. R.W. Brown, Y.C.N. Cheng, E.M. Haacke, M.R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Principles and Sequence Design (Hoboken: Wiley, 1999).

    Google Scholar 

  12. T. Vaughan, L. DelaBarre, C. Snyder, J. Tian, C. Akgun, D. Shrivastava, and P. Anderson, Magn. Reson. Med. 56, 1274 (2006).

    Google Scholar 

  13. D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Science 305, 794 (2004).

    Google Scholar 

  14. D.K. Sodickson and W.J. Manning, Magn. Reson. Med. 38, 591 (1997).

    CAS  Google Scholar 

  15. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, and P. Boesiger, Magn. Reson. Med. 42, 952 (1999).

    CAS  Google Scholar 

  16. P.B. Roemer, W.A. Edelstein, C.E. Hayes, S.P. Souza, and O.M. Mueller, Magn. Reson. Med. 16, 192 (1990).

    CAS  Google Scholar 

  17. D. Brunner, N. De Zanchei, J. Frohlich, J. Paska, and K. Pruessmann, Nature 457, 994 (2009).

    CAS  Google Scholar 

  18. V. Kuperman, Magnetic Resonance Imaging. Physical Principles and Applications (San Diego: Academic Press, 2000).

    Google Scholar 

  19. D. Hogemann, L. Josephson, R. Weissleder, and J.P. Basilion, Bioconjug. Chem. 11, 941 (2000).

    CAS  Google Scholar 

  20. R.J. Stafford, Med. Phys. 32, 2077 (2005).

    Google Scholar 

  21. S.E. Solis, R. Martin, F. Vazquez, and A.O. Rodriguez, Magn. Reson. Mater. Phys. Bio. Med. 28, 599 (2015).

    Google Scholar 

  22. C.E. Hayes, W.A. Edelstein, J.F. Schenck, O.M. Mueller, and M. Eash, J. Magn. Reson. 63, 622 (1985).

    CAS  Google Scholar 

  23. U. Katscher and P. Bornert, NMR Biomed. 19, 393 (2006).

    Google Scholar 

  24. J.D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, Phys. Rev. A 78, 0133842 (2008).

    Google Scholar 

  25. N. Engheta and R.W. Ziolkowski, eds., Metamaterials: Physics and Engineering Explorations (Hoboken: IEEE Press, Wiley, 2006).

    Google Scholar 

  26. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (New York: Springer, 2010).

    Google Scholar 

  27. R. Marques, F. Mesa, J. Martel, and F. Medina, IEEE Trans. Antennas Propag. 51, 2572 (2003).

    Google Scholar 

  28. R.R.A. Syms, T. Floume, I. Young, L. Solymar, and M. Rea, Metamaterials 4, 1 (2010).

    Google Scholar 

  29. H. Ali, Plasmonics. 14, 91 (2019).

    Google Scholar 

  30. S. Babic and C. Akyel, IEEE Trans. 44, 445 (2008).

    Google Scholar 

  31. N.R.V. Nightingale, V.D. Goodridge, R.J. Sheppard, and J.L. Christie, Phys. Med. Bio. 28, 897 (1983).

    CAS  Google Scholar 

  32. L. Brillouin, Wave Propagation and Group Velocity (New York and London: Academic Press, 1960).

    Google Scholar 

  33. T.J. Aprille and T.N. Timothy, Proc. IEEE 60, 108 (1972).

    Google Scholar 

  34. V.A. Podolskiy, N.A. Kuhta, and W.G. Milton, Appl. Phys. Lett. 87, 231113 (2005).

    Google Scholar 

  35. D.F. Sievenpiper, M.E. Sickmiller, and E. Yablonovitch, Phys. Rev. Lett. 76, 2480 (1996).

    CAS  Google Scholar 

  36. X.D. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco Jr, and J.A. Kong, Phys. Rev. E 70, 016608 (2004).

    Google Scholar 

  37. R.R.A. Syms, L. Solymar, and I.R. Young, Metamaterials. 2, 122 (2008).

    Google Scholar 

  38. O. Sydoruk, E. Shamonina, and L. Solymar, J. Appl. Phys. D. 40, 6879 (2007).

    CAS  Google Scholar 

  39. H. Ali, H. Ni, and X. Xu, JOSAA. 37, 621 (2020).

    Google Scholar 

  40. M.D. Harpen, Magn. Reson. Med. 29, 263 (1993).

    CAS  Google Scholar 

  41. K. Hadjicosti, O. Sydoruk, S.A. Maier, and E. Shamonina, J. Phys. 16, 163910 (2015).

    Google Scholar 

  42. V. Valkenburg, Network Analysis (London: Prentice-Hall, 1958).

    Google Scholar 

  43. L. Jelinek, R. Marqués, and M. Freire, J. Appl. Phys. 105, 024907 (2009).

    Google Scholar 

  44. C.A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. (Hoboken: Wiley, 2012).

    Google Scholar 

  45. D.G. Reed, ARRL Handbook for Radio Communications, 82nd ed. (Newington: American Radio Relay League, 2005).

    Google Scholar 

  46. S.C. Thierauf, High-Speed Circuit Board Signal Integrity (Norwood: Artech House, 2004).

    Google Scholar 

  47. S. Tan, F. Yan, L. Sing, W. Cao, N. Xu, X. Hu, and W. Zhang, Opt. Express 23, 29222 (2015).

    CAS  Google Scholar 

  48. F.B. Rosa and F.W. Grover, Formulas and Tables for Calcualation of Mutual and Self-Inductance (Washington, DC: Government Printing Office, Bureau of Standards, 1948).

    Google Scholar 

  49. S.H. Hall and H.L. Heck, Advanced Signal Integrity for High-Speed Digital Designs (New Jersey: Wiley, 2009).

    Google Scholar 

  50. W. Wensong, Y. Chen, S. Yang, X. Zheng, and Q. Cao, J. Electromagn. Waves Appl. 29, 2080 (2015).

    Google Scholar 

  51. R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory and Microwave Applications (New York: Wiley, 2008).

    Google Scholar 

  52. S. Maslovski, S. Tretyakov, and P. Alitalo, J. Appl. Phys. 96, 1293 (2004).

    CAS  Google Scholar 

  53. J.M. Algarin, M.A. Lopez, M.J. Freire, and R. Marques, New J. Phys. 13, 115006 (2011).

    Google Scholar 

  54. D.I. Hoult and R.E. Richards, J. Magn. Reson. 24, 71 (1976).

    Google Scholar 

  55. W.A. Edelstein, G.H. Glover, C.J. Hardy, and R.W. Redington, Reson. Med. 3, 604 (1986).

    CAS  Google Scholar 

  56. M. Freire, R. Marqués, and L. Jelinek, Appl. Phys. Lett. 93, 231108 (2008).

    Google Scholar 

  57. J.N. Hwang and F.C. Chen, IEEE Trans. Antennas Propag. 54, 3763 (2006).

    Google Scholar 

  58. L.D. Landau and E.M. Lifschitz, Electrodynamics of Continuous Media (Oxford: Pergamon Press, 1984).

    Google Scholar 

  59. Q.X. Yang, Magn. Reson. Med. 65, 358 (2011).

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the partial support from the National Natural Science Foundation of China (NSFCs 61271085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ali.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and the manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Xu, X. & Ni, H. Metamaterial Magnetic Sheet at 3.7-T MRI for Animal Imaging. J. Electron. Mater. 49, 7495–7501 (2020). https://doi.org/10.1007/s11664-020-08512-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08512-0

Keywords

Navigation