Skip to main content
Log in

Hemodynamic Effects of Pathological Tortuosity of the Internal Carotid Arteries Based on MRI and Ultrasound Studies

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Our study was designed to determine the effect of different forms of pathological tortuosity of the internal carotid arteries on the formation of hemodynamic flow profile. Using a 1.5 T magnetic resonance imaging (MRI) device, 50 healthy volunteers and 43 patients with pathological tortuosity of the internal carotid arteries were studied by applying routine MRI protocol and quantitative phase-contrast MR angiography. Changes in the peak, linear and volumetric blood flow rates as well as the cross-sectional areas of the vessel were measured during the cardiac cycle within the cervical and intracranial segments of the internal carotid arteries. 20 patients with pathological tortuosity of the internal carotid arteries were subjected to ultrasound study. In both, the control group and the group with pathological tortuosity, the shape of the curves that reflects the change in the linear blood flow rate as a function of the cardiac cycle, obtained with ultrasound and MRI, qualitatively coincides and does not depend on the tested segment of the artery and its path. The correlation coefficient was low between the peak blood flow rate obtained by ultrasound and MRI. The quantitative values of the blood flow rate, obtained in the control group and the group with pathological tortuosity, differed significantly in different segments of the internal carotid arteries. However, no significant differences were observed in blood flow rates between various forms of ICA tortuosity. The cross-sectional area was significantly higher in the case of pathological tortuosity of the internal carotid arteries as compared to the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.G. Thrift, D.A. Cadilhac, T. Thayabaranathan, G. Howard, V.J. Howard, P.M. Rothwell, G.A. Donnan, Int J Stroke 9(1), 6–18 (2014)

    Article  Google Scholar 

  2. The top 10 causes of death. World Health Organization. Fact sheet No. 310. Updated May 2014

  3. G.A. Donnan, M. Fisher, M. Macleod, S.M. Davis, Stroke 371(9624), 1612–1623 (2008)

    Google Scholar 

  4. J.L. Eller, K.V. Snyder, A.H. Siddiqui, E.I. Levy, L.N. Hopkins, Neurosurg. Clin. N. Am. 25(3), 565–582 (2014)

    Article  Google Scholar 

  5. F.A. Weaver, Am. J. Surg. 208(1), 124–129 (2014)

    Article  MathSciNet  Google Scholar 

  6. G. La Barbera, G. La Marca, A. Martino, R. Lo Verde, F. Valentino, D. Lipari, G. Peri, F. Cappello, B. Valentino, Surg. Radiol. Anat. 28(6), 573–580 (2006)

    Article  Google Scholar 

  7. R. Beigelman, A.M. Izaguirre, M. Robles, D.R. Grana, G. Ambrosio, J. Milei, Angiology 61(1), 107–112 (2010)

    Article  Google Scholar 

  8. K. Hayashi, T. Naiki, J. Mech. Behav. Biomed. Mater. 2(1), 3–19 (2009)

    Article  Google Scholar 

  9. M. Zenteno, F. Viñuela, L.R. Moscote-Salazar, H. Alvis-Miranda, R. Zavaleta, A. Flores, A. Rojas, A. Lee, Roman. Neurosurg. 21(1), 51–60 (2014)

    Google Scholar 

  10. C. Togay-Işikay, J. Kim, K. Betterman, C. Andrews, D. Meads, P. Tesh, C. Tegeler, D. Oztuna, Acta Neurol. Belg. 105(2), 68–72 (2005)

    Google Scholar 

  11. M. Aleksic, G. Schütz, S. Gerth, J. Mulch, J. Cardiovasc. Surg. (Torino) 45(1), 43–48 (2004)

    Google Scholar 

  12. E. Ballotta, E. Abbruzzese, G. Thiene, T. Bottio, G. Dagiau, A. Angelini, M. Saladini, Ann. Vasc. Surg. 11(2), 120–128 (1997)

    Article  Google Scholar 

  13. K. Quirk, D.F. Bandyk, Semin. Vasc. Surg. 26(2–3), 72–78 (2013)

    Article  Google Scholar 

  14. J.J. Schneiders, S.P. Ferns, P. van Ooij, M. Siebes, A.J. Nederveen, R. van den Berg, J. van Lieshout, G. Jansen, E. vanBavel, C.B. Majoie, AJNR Am. J. Neuroradiol. 33(9), 1786–1790 (2012)

    Article  Google Scholar 

  15. M. Calderon-Arnulphi, S. Amin-Hanjani, A. Alaraj, M. Zhao, X. Du, S. Ruland, X.J. Zhou, K.R. Thulborn, F.T. Charbel, AJNR Am. J. Neuroradiol. 32(8), 1552–1559 (2011)

    Article  Google Scholar 

  16. S. Meckel, L. Leitner, L.H. Bonati, F. Santini, T. Schubert, A.F. Stalder, P. Lyrer, M. Markl, S.G. Wetzel, Neuroradiology 55(4), 389–398 (2013)

    Article  Google Scholar 

  17. K.J. van Everdingen, C.J. Klijn, L.J. Kappelle, W.P. Mali, J. van der Grond, Stroke 28(8), 1595–1600 (1997)

    Article  Google Scholar 

  18. D.R. Rutgers, J.D. Blankensteijn, J. van der Grond, Stroke 31(12), 3021–3028 (2000)

    Article  Google Scholar 

  19. S. Amin-Hanjani, J.H. Shin, M. Zhao, X. Du, F.T. Charbel, J. Neurosurg. 106(2), 291–298 (2007)

    Article  Google Scholar 

  20. M. Zhao, S. Amin-Hanjani, S. Ruland, A.P. Curcio, L. Ostergren, F.T. Charbel, AJNR Am. J. Neuroradiol. 28(8), 1470–1473 (2007)

    Article  Google Scholar 

  21. O. Bogomyakova, Y. Stankevich, L. Shraibman, A. Tulupov, Appl. Magn. Reson. 45(8), 785–796 (2014)

    Article  Google Scholar 

  22. L. Shraibman, O. Bogomyakova, Y. Stankevich, A. Tulupov, Exp. Clin. Cardiol. 20(8), 3963–3968 (2014)

    Google Scholar 

  23. A. Tulupov, L. Savelyeva, O. Bogomyakova, Yu. Prygova, Appl. Magn. Reson. 41, 551–560 (2011)

    Article  Google Scholar 

  24. A. Tulupov, L. Savelyeva, O. Bogomyakova, Yu. Prygova, Appl. Magn. Reson. 41, 543–555 (2011)

    Article  Google Scholar 

  25. W.J. Zwiebel, J.S. Pellerito, Introduction to Vascular Ultrasonography, 5th edn. (Elsevier Saunders, Philadelphia, 2008), p. 150

    Google Scholar 

  26. W.J. Zwiebel, J.S. Pellerito, Introduction to Vascular Ultrasonography, 5th edn. (Elsevier Saunders, Philadelphia, 2008), p. 152

    Google Scholar 

  27. W.J. Zwiebel, J.S. Pellerito, Introduction to Vascular Ultrasonography, 5th edn. (Elsevier Saunders, Philadelphia, 2008), p. 187

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Russian Science Foundation (project no. 14-35-00020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Stankevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankevich, Y., Rezakova, M., Bogomyakova, O. et al. Hemodynamic Effects of Pathological Tortuosity of the Internal Carotid Arteries Based on MRI and Ultrasound Studies. Appl Magn Reson 46, 1109–1120 (2015). https://doi.org/10.1007/s00723-015-0708-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0708-x

Keywords

Navigation