Skip to main content
Log in

Hyperfine Interaction Tensors of 13C Nuclei for Ring Carbons of Ubisemiquinone-10 Hydrogen Bonded in Alcohol Solvents

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The anion radicals of ubiquinones-10 13C chemically labeled at the C5 or C6 ring positions in alcohol have been studied by 1D and 2D ESEEM to define the hyperfine interaction tensors with the 13C nuclei. Analysis of the cross-peak line shapes and simulations of the spectra allowed us to conclude that the hyperfine tensors are characterized by an anisotropic component T ~6 MHz and an isotropic coupling a ~−3 MHz with support from DFT calculations. However, these values were found to be inconsistent with the shift of the sum combination harmonic in the four-pulse ESEEM spectra. Simulations resolve this apparent discrepancy by showing that the shift of the sum combination to lower frequency and its broadening can be accounted for by a distribution of the hyperfine couplings. A spread of the methoxy group conformations, as supported by previous experimental observations, is suggested as the mechanism influencing the distribution of the hyperfine couplings for the ring carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Quinones and quinone enzymes, Part A, Methods in Enzymology, 378 (2004)

  2. Quinones and quinone enzymes, Part B, Methods in Enzymology, 382 (2004)

  3. N. Ficher, P. Rich, J. Mol. Biol. 296, 1153 (2000)

    Article  Google Scholar 

  4. P. Mitchell, J. Theor. Biol. 62, 327 (1976)

    Article  Google Scholar 

  5. B.L. Trumpower (ed.), Functions of Quinones in Energy Conserving Systems (Academic Press, New York, 1982)

  6. M.R. Gunner, J. Madeo, Z. Zhu, J. Bioenerg. Biomembr. 40, 509 (2008)

    Article  Google Scholar 

  7. C.A. Wraight, Front. Biosci. 9, 309 (2004)

    Article  Google Scholar 

  8. W. Lubitz, G. Feher, Appl. Magn. Reson. 17, 1 (1999)

    Article  Google Scholar 

  9. A. Schnegg, A.A. Dubinskii, M.R. Fuchs, YuA Grishin, E.P. Kirilina, W. Lubitz, M. Plato, A. Savitsky, K. Möbius, Appl. Magn. Reson. 31, 59 (2007)

    Article  Google Scholar 

  10. S.A. Dikanov, Electron Paramagn. Resonan. 23, 103 (2013)

    Article  Google Scholar 

  11. R.I. Samoilova, W. van Liemt, W.F. Steggerda, J. Lugtenburg, A.J. Hoff, A.P. Spoyalov, A.M. Tyryshkin, N.P. Gritsan, YuD Tsvetkov, J. Chem. Soc. Perkin Trans. 2, 609 (1994)

    Article  Google Scholar 

  12. R.I. Samoilova, N.P. Gritsan, A.J. Hoff, W. van Liemt, J. Lugtenburg, A.P. Spoyalov, Yu.D. Tsvetkov, J. Chem. Soc. Perkin Trans. 2, 2063 (1995)

    Article  Google Scholar 

  13. W.B.S. van Liemt, W.F. Steggerda, R. Esmeijer, J. Lugtenburg, Rel. Trav. Chim. Pays-Bas 113, 155 (1994)

    Google Scholar 

  14. R.B. Boers, P. Gast, A.J. Hoff, H.J.M. de Groot, J. Lugtenburg, Eur. J. Org. Chem. 189 (2002)

  15. M.T. Lin, L.J. Sperling, H.L. Frericks, Schmidt, M. Tang, R.I. Samoilova, T. Kumasaka, T. Iwasaki, S.A. Dikanov, C.M. Rienstra, R.B. Gennis, Methods 55, 370 (2011)

    Article  Google Scholar 

  16. M.T. Lin, A.A. Shubin, R.I. Samoilova, K.V. Narasimhulu, A. Baldansuren, R.B. Gennis, S.A. Dikanov, J. Biol. Chem. 286, 10105 (2011)

    Article  Google Scholar 

  17. O. Nimz, F. Lendzian, C. Boullias, W. Lubitz, Appl. Magn. Reson. 14, 255 (1998)

    Article  Google Scholar 

  18. T.N. Kropacheva, W.B.S. van Liemt, J. Raap, J. Lugtenburg, A.J. Hoff, J. Phys. Chem. 100, 10433 (1996)

    Article  Google Scholar 

  19. J.S. Van den Brink, A.P. Spoyalov, P. Gast, W.B.S. van Liemt, J. Raap, J. Lugtenburg, A.J. Hoff, FEBS Lett. 353, 273 (1994)

    Article  Google Scholar 

  20. S. Grimaldi, T. Ostermann, N. Weiden, T. Mogi, H. Miyoshi, B. Ludwig, H. Michel, T. Prisner, F. MacMillan, Biochemistry 42, 5632 (2003)

    Article  Google Scholar 

  21. A.T. Taguchi, P.J. O’Malley, C.A. Wraight, S.A. Dikanov, Biochemistry 52, 4648 (2013)

    Article  Google Scholar 

  22. P. Höfer, A. Grupp, H. Nebenführ, M. Mehring, Chem. Phys. Lett. 132, 279 (1986)

    Article  ADS  Google Scholar 

  23. S. Stoll, R.D. Britt, Phys. Chem. Chem. Phys. 11, 6614 (2009)

    Article  Google Scholar 

  24. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01. (Wallingford CT, 2009)

  25. E.J. Reijerse, S.A. Dikanov, J. Chem. Phys. 95, 836 (1991)

    Article  ADS  Google Scholar 

  26. S.A. Dikanov, M.K. Bowman, J. Magn. Reson. Ser. A 116, 125 (1995)

    Article  ADS  Google Scholar 

  27. S.A. Dikanov, A.M. Tyryshkin, M.K. Bowman, J. Magn. Reson. 144, 228 (2000)

    Article  ADS  Google Scholar 

  28. C. Gemperle, G. Aebli, A. Schweiger, R.R. Ernst, J. Magn. Reson. 88, 241 (1990)

    ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the DE-FG02-08ER15960 Grant from Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Sciences, US Department of Energy and NIH Grant GM062954 (S.A.D.), and NCRR/NIH Grant S10-RR15878 and S10-RR025438 for pulsed EPR instrumentation. A.T.T. gratefully acknowledges support as a NIH trainee of the Molecular Biophysics Training Program (5T32-GM008276). P.J.O’M. acknowledges the use of computer resources granted by the EPSRC UK national service for computational chemistry software (NSCCS). Part of this work was supported by the Netherlands Organization for Scientific Research (NOW). R.I.S. thanks NOW for sponsoring her stay at Leiden University and the group of Prof. J. Lugtenburg for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick J. O’Malley, Sergei A. Dikanov or Johan Lugtenburg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

723_2014_574_MOESM1_ESM.docx

Figure S1-structure and IUPAC numbering of ubiquinone-10; Figures S2–S3 experimental 1D and 2D ESEEM spectra; Figures S4–S7 comparison of calculated and experimental spectra (DOCX 1287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilova, R.I., Taguchi, A.T., O’Malley, P.J. et al. Hyperfine Interaction Tensors of 13C Nuclei for Ring Carbons of Ubisemiquinone-10 Hydrogen Bonded in Alcohol Solvents. Appl Magn Reson 45, 941–953 (2014). https://doi.org/10.1007/s00723-014-0574-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0574-y

Keywords

Navigation