Skip to main content
Log in

Nitronyl Nitroxides as a Spin Probe in EPR Tomography In Vivo

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Recently, new water- and blood-soluble nitronyl nitroxides, 2-(5-methyl-1H-imidazole-4-yl)-4,4,5,5-tetramethyl-4,5-dihydroimidazole-3-oxide-1-oxyl (NN1) and 2-(1H-imidazole-4-yl)-4,4,5,5-tetramethyl-4,5-dihydroimidazole-3-oxide-1-oxyl (NN2), (Fig. 1), were synthesized and used as contrast agents for MRI (Savelov et al. Dokl Academ Nauk 416(4): 493–495, 2007). Taking into account the high rate constants of NN’s reduction by ascorbic acid and other biologically relevant reductants, it is not clear which factors helped with the use of these nitroxides in vivo as a contrast reagent. Moreover, due to high solubility in an aqueous solution and low toxicity (Ovcharenko et al. in Dokl Academ Nauk 404(2):198–200, 2005, Eriksson et al. in Drug Metab Dispos 15(2):155–160, 1987, Afzal et al. in Polyhedron 22(14):1957–1964, 2003) of NNs, it seems possible to use them as a spin probe for NO in vivo with EPR tomography. In this paper, we studied reduction of NN1 and NN2 in model conditions (by ascorbic acid) and in vitro. In addition, the possibility of NN1 and NN2 to be used as paramagnetic probes for L-band EPR imaging in vivo was investigated. Nitric oxide (NO) expression in vivo leads to the decrease in concentrations of NN1, 2 upon the injection in a mouse body, that can be explained by the reaction of studied radicals with NO and fast transformation of the reaction products to diamagnetic species. Pharmacokinetics of NN1, 2 and limitations of their application as contrast agents in MRI are discussed also. Finally, the results of EPR tomography were compared with MRI data. It is shown that the fast reduction of the reaction product of NN with NO—imino nitroxides—is the main obstacle to use NN as a spin probe in vivo.

The chemical structures of the nitronyl nitroxides NN1 and NN2 and corresponding imino nitroxides IN1 and IN2. X = CH3 for NN1 and IN1; X = H for NN2 and IN2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Yoon, J.H. Song, S.H. Hong, J. Q Kim, Clin. Chem. 46(10), 1626–1630 (2000)

    Google Scholar 

  2. R.A. Hopper, J. Garthwaite, J. Neurosci. 26(45), 11513–11521 (2006)

    Article  Google Scholar 

  3. D.E. Koshland, E. Culotta, Science 258(5090), 1862–1865 (1992)

    Article  ADS  Google Scholar 

  4. V.I. Yelinova, V.V. Khramtsov, A.L. Markel, Biochem. Biophys. Res. Commun. 263, 450–453 (1999)

    Article  Google Scholar 

  5. E.F. Ullman, L. Call, J.H. Osiecki, J. Org. Chem. 35, 3623–3631 (1970)

    Article  Google Scholar 

  6. T. Akaike, M. Yoshida, Y. Miyamoto, K. Sato, M. Kohno, K. Sasamoto, K. Miyazaki, S. Ueda, H. Maeda, Biochemistry 32, 827–832 (1993)

    Article  Google Scholar 

  7. Y.Y. Woldman, V.V. Khramtsov, I.A. Grigor’ev, I.A. Kiriljuk, D.I. Utepbergenov, Biochem. Biophys. Res. Commun. 202, 195–203 (1994)

  8. Y. Zhang, N. Hogg, Free Radic. Biol. Med. 32, 1212–1219 (2003)

    Article  Google Scholar 

  9. J. Joseph, B. Kalyanaraman, J.S. Hyde, Biochem. Biophys. Res. Commun. 192, 926–934 (1993)

    Article  Google Scholar 

  10. A. Mori, Y. Noda, L. Packer, Epilepsy Res. 30, 153–158 (1998)

    Article  Google Scholar 

  11. G.M. Pieper, W. Siebeneich, J. Pharmacol. Exp. Ther. 283, 138–147 (1997)

    Google Scholar 

  12. M. Yoshida, T. Akaike, Y. Wada, K. Sato, K. Ikeda, S. Ueda, H. Maeda, Biochem. Biophys. Res. Comm. 202, 923–930 (1994)

    Article  Google Scholar 

  13. R.J. Singh, N. Hogg, F. Neese, J. Joseph, B. Kalyanaraman, Photochem. Photobiol. 61, 325–330 (1995)

    Article  Google Scholar 

  14. N. Hogg, R.J. Singh, J. Joseph, F. Neese, B. Kalyanaraman, Free Radic. Res. 22, 47–56 (1995)

    Article  Google Scholar 

  15. R.F. Haseloff, S. Zollner, I.A. Kirilyuk, I.A. Grigor’ev, R. Reszka, R. Bernhardt, K. Mertsch, B. Roloff, I.E. Blasig, Free Radic. Res. 26, 7–17 (1997)

  16. A.A. Bobko, E.G. Bagryanskaya, V.A. Reznikov, N.G. Kolosova, T.L. Clanton, V.V. Khramtsov, Free Radic. Biol. Med. 36(2), 248–258 (2004)

    Article  Google Scholar 

  17. G.M. Rosen, S. Porasuphatana, P. Tsai, N.P. Ambulos, V.E. Galtsev, K. Ichikawa, H.J. Halpern, Macromolecules 36, 1021–1027 (2003)

    Article  ADS  Google Scholar 

  18. A.A. Bobko, A. Ivanov, V.V. Khramtsov, Free Radic. Res. 47(2), 74–81 (2013)

    Article  Google Scholar 

  19. V. Khramtsov, L.J. Berliner, T.L. Clanton, Magn. Reson. Med. 42, 228–234 (1999)

    Article  Google Scholar 

  20. V.V. Khramtsov, V.A. Reznikov, L.J. Berliner, A.K. Litkin, I.A. Grigor’ev, T.L. Clanton, Free Radic. Biol. Med. 30, 1099–1107 (2001)

    Article  Google Scholar 

  21. D.I. Potapenko, T.L. Clanton, E.G. Bagryanskaya, N.P. Gritsan, V.A. Reznikov, V.V. Khramtsov, Free Radic. Biol. Med. 34(2), 196–206 (2003)

    Article  Google Scholar 

  22. A.A. Bobko, S.V. Sergeeva, E.G. Bagryanskaya, A.L. Markel, V.V. Khramtsov, V.A. Reznikov, N.G. Kolosova, Biochem. Biophys. Res. Commun. 330(2), 367–370 (2005)

    Article  Google Scholar 

  23. V.I. Ovcharenko, EYu. Fursova, T.G. Tolstikova, K.N. Sorokina, AYu. Letyagin, A.A. Savelov, Dokl. Acad. Nauk. 404(2), 198–200 (2005)

    Google Scholar 

  24. A.A. Savelov, D.A. Kokorin, EYu. Fursova, V.I. Ovcharenko, Dokl. Acad. Nauk. 416(4), 493–495 (2007)

    Google Scholar 

  25. U.G. Eriksson, R.C. Brasch, T.N. Tozer, Drug Metab. Dispos. 15(2), 155–160 (1987)

    Google Scholar 

  26. V. Afzal, R.C. Brasch, D.E. Nitecki, S. Wolff, Investig. Radiol. 19(6), 549–552 (1984)

    Article  Google Scholar 

  27. E. Fursova, G. Romanenko, V. Ikorskii, V. Ovcharenko, Polyhedron 22(14), 1957–1964 (2003)

    Article  Google Scholar 

  28. S. Okazaki, M.A. Mannan, K. Sawai, T. Masumizu, Y. Miura, K. Takeshita, Free Radic. Res. 41(10), 1069–1077 (2007)

    Article  Google Scholar 

  29. J.E. Harkness, J.E. Wagner, The Biology and Medicine of Rabbits and Rodents, 3rd edn. (Lea&Febiger, Philadelphia, 1989)

  30. A.A. Bobko, I.A. Kirilyuk, I.A. Grigor’ev, J.L. Zweier, V.V. Khramtsov, Free Radic. Biol. Med. 42, 404–412 (2007)

    Article  Google Scholar 

  31. E.N. Todhunter, T.J. McMillan, J. Nutr. 31(5), 573–580 (1946)

    Google Scholar 

  32. S.V. Blagodatskikh, V.K. Piotrovskii, V.I. Metelits, O.S. Riabokon’, SIu Martsevich, Farmakol. Toksikol. 50(6), 59–63 (1987)

    Google Scholar 

  33. S.J. Chung, H.L. Fung, Biochem. Pharmacol. 45(1), 157–163 (1993)

    Article  Google Scholar 

  34. E. Coronado, C. Giménez-Saiz, M. Nicolas, F.M. Romero, E. Rusanov, H. Stoeckli-Evans, New J. Chem. 27, 490–497 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project nos. 12-04-014350 and 14-03-32024) and the Russian Science Foundation (project no. 14-14-00922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Bagryanskaya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strizhakov, R.K., Shundrin, L.A., Kolosova, N.G. et al. Nitronyl Nitroxides as a Spin Probe in EPR Tomography In Vivo. Appl Magn Reson 45, 743–758 (2014). https://doi.org/10.1007/s00723-014-0555-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0555-1

Keywords

Navigation