Skip to main content
Log in

Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this mini review, magnetic resonance imaging (MRI) contrast agents based on lanthanideoxide (Ln2O3) nanoparticles are described. Ln2O3 (Ln = Gd, Dy, Ho, and Er) nanoparticles are paramagnetic, but show appreciable magnetic moments at room temperature and even at ultrasmall particle diameters. Among Ln2O3 nanoparticles, Gd2O3 nanoparticles show larger longitudinal water proton relaxivity (r1) values than Gd-chelates because of the large amount of Gd in the nanoparticle, and the other Ln2O3 nanoparticles (Ln = Dy, Ho, and Er) show appreciable transverse water proton relaxivity (r2) values. Therefore, Gd2O3 nanoparticles are potential T1 MRI contrast agents while the other Ln2O3 nanoparticles are potential T2 MRI contrast agents at high MR fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rudin, Molecular imaging: principles and applications in biomedical research, 2nd Ed. (Imperial College Press, London, UK, 2005).

    Google Scholar 

  2. R. Weissleder and U. Mahmood, Radiology 219, 316 (2001).

    Article  Google Scholar 

  3. J. C. Paeng and D. S. Lee, Open Nucl. Med. J. 2, 145 (2010).

    Article  Google Scholar 

  4. T. F. Massoud and S. S. Gambhir, Genes & Development 17, 545 (2003).

    Article  Google Scholar 

  5. R. H. Hashemi, W. G. Bradley and C. J. Lisanti, MRI The Basics, 2nd Ed. (Lippincott Williams & Wilkins, New York, 2004).

    Google Scholar 

  6. G. H. Lee, Y. Chang and T. J. Kim, Eur. J. Inorg. Chem. 2012, 1924 (2012).

    Article  Google Scholar 

  7. W. Xu, K. Kattel, J. Y. Park, Y. Chang, T. J. Kim and G. H. Lee, Phys. Chem. Chem. Phys. 14, 12687 (2012).

    Article  Google Scholar 

  8. T. J. Kim, K. S. Chae, Y. Chang and G. H. Lee, Curr. Topics Med. Chem. 13, 422 (2013).

    Article  Google Scholar 

  9. H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi and J. V. Frangioni, Nat. Biotechnology 25, 1165 (2007).

    Article  Google Scholar 

  10. R. B. Lauffer, Chem. Rev. 87, 901 (1987).

    Article  ADS  Google Scholar 

  11. P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem. Rev. 99, 2293 (1999).

    Article  Google Scholar 

  12. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd Ed. (Butterworth-Heinemann, New York, USA, 1997), p. 1243.

    Google Scholar 

  13. K. Kattel et al., ACS Appl. Mater. Interfaces 3, 3325 (2011).

    Article  Google Scholar 

  14. K. Kattel et al., Biomaterials 33, 3254 (2012).

    Article  Google Scholar 

  15. M. Norek, E. Kampert, U. Zeitler and J. A. Peters, J. Am. Chem. Soc. 130, 5335 (2008).

    Article  Google Scholar 

  16. M. Norek, G. A. Pereira, C. F. G. C. Geraldes, A. Denkova, W. Zhou and J. A. Peters, J. Phys. Chem. C 111, 10240 (2007).

    Article  Google Scholar 

  17. J. Y. Park et al., ACS Nano 3, 3663 (2009).

    Article  Google Scholar 

  18. C. R. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae and G. H. Lee, Phys. Chem. Chem. Phys. 16, 19866 (2014).

    Article  Google Scholar 

  19. J. Fang, P. Chandrasekharan, X. Liu, Y. Yang, Y. Lv, C. Yang and J. Ding, Biomaterials 35, 1636 (2014).

    Article  Google Scholar 

  20. H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon and H. Mattoussi, J. Am. Chem. Soc. 127, 3870 (2005).

    Article  Google Scholar 

  21. J. Y. Park, K. Kattel, W. Xu, H. G. Kim, E. J. Kim, G. H. Lee, J. J. Lee, Y. Chang and T. J. Kim, J. Korean Phys. Soc. 59, 2376 (2011).

    Article  Google Scholar 

  22. K. Kattel et al., J. Nanosci. Nanotechnol. 13, 7214 (2013).

    Article  Google Scholar 

  23. C. Chang and D. Mao, Int. J. Chem. Kinet. 39, 75 (2007).

    Article  Google Scholar 

  24. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th Ed. (Wiley-Interscience Publication, New York, 1980), p. 646, p. 984.

    Google Scholar 

  25. S. Arajs and R. V. Colvin, J. Appl. Phys. 35, 1181 (1964).

    Article  ADS  Google Scholar 

  26. S. Arajs and R. V. Colvin, J. Appl. Phys. 33, 2517 (1962).

    Article  ADS  Google Scholar 

  27. W. C. Koehler, E. O.Wollan and M. K.Wilkinson, Phys. Rev. 110, 37 (1958).

    Article  ADS  Google Scholar 

  28. H. B. Lal, V. Pratap and A. Kumar, Pramana 10, 409 (1978).

    Article  ADS  Google Scholar 

  29. R. M. Moon, W. C. Koehler, H. R. Child and L. J. Raubenheimer, Phys. Rev. 176, 722 (1968).

    Article  ADS  Google Scholar 

  30. R. M. Moon and W. C. Koehler, Phys. Rev. B 11, 1609 (1975).

    Article  ADS  Google Scholar 

  31. J. Blanusa, B. Antic, A. Kremenovic, A. S. Nikolic, L. Mazzerolles, S. Mentus and V. Spasojevic, Solid State Commun. 144, 310 (2007).

    Article  ADS  Google Scholar 

  32. B. N. Figgis and J. Lewis, The Magnetochemistry of Complex Compounds,_In J. Lewis and R. G. Wilkins (Modern Coordination Chemistry, New York, Wiley, 1960), p. 406.

  33. R. L. Carlin, Magnetochemistry (Springer-Verlag, Berlin, 1986), p. 238.

    Google Scholar 

  34. B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley Publishing Company, Reading, 1972), p. 102.

    Google Scholar 

  35. G. Wang, X. Zhang, A. Skallberg, Y. Liu, Z. Hu, X. Mei and K. Uvdal, Nanoscale 6, 2953 (2014).

    Article  ADS  Google Scholar 

  36. E. S. Choi, J. Y. Park, K. Kattel, W. Xu, G. H. Lee, M. J. Baek, J. H. Kim, Y. Chang and T. J. Kim, J. Korean Phys. Soc. 56, 1532 (2010).

    Article  Google Scholar 

  37. A. Roch, R. N. Muller and P. Gillis, J. Chem. Phys. 110, 5403 (1999).

    Article  ADS  Google Scholar 

  38. P. Reimer and T. Balzer, Eur. Radiol. 13, 1266 (2003).

    Google Scholar 

  39. C. W. Jung and P. Jacobs, Magn. Reson. Imaging 13, 661 (1995).

    Article  Google Scholar 

  40. J. Lodhia, G. Mandarano, N. J. Ferris, P. Eu and S. F. Cowell, Biomed. Imaging Interv. J. 6, e12 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmin Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G.H., Chang, Y. Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles. Journal of the Korean Physical Society 67, 44–51 (2015). https://doi.org/10.3938/jkps.67.44

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.44

Keywords

Navigation