Skip to main content
Log in

Diamond brecciation and annealing accompanying major metasomatism in eclogite xenoliths from the Sask Craton, Canada

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We studied eclogite xenoliths (diamond-free n = 28; diamondiferous n = 22) from the Cretaceous Fort à la Corne Kimberlite Field in Western Canada for their major element, trace element and oxygen isotope compositions to assess their origin and metasomatic history, and possible relationships between metasomatism and diamond formation. All eclogites have major element and oxygen isotope compositions consistent with a derivation from different levels of subducted, seawater altered oceanic crust. While barren xenoliths are more likely to be of gabbroic origin, diamond-bearing samples commonly have signatures consistent with shallow basaltic protoliths. The mineral chemistry in bimineralic diamond-free eclogites spans a wide compositional range, yet it is typically homogenous within individual xenoliths. Temperatures calculated from Mg-Fe exchange between garnet and clinopyroxene range widely for these eclogites, from 740 to 1300 °C, indicating the presence of eclogite through most of the lithospheric mantle. Diamondiferous samples are restricted to high temperatures (1180–1390 °C), consistent with derivation from the zone of diamond stability. Compositionally, diamond-bearing eclogites span a broad range similar to their barren counterparts, but there is also heterogeneity in mineral chemistry on the intra-sample level and in particular garnets are characterised by strong internal chemical gradients. This intra-sample heterogeneity is interpreted as the result of intense melt metasomatism, which occurred in temporal proximity to host kimberlite magmatism, strongly affected major, trace and even oxygen isotope values and resulted in diamond brecciation and annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alabaster T, Pearce JA, Malpas J (1982) The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib Mineral Petrol 81:168–183

    Article  Google Scholar 

  • Armstrong JT (1995) CITZAF: A package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films, and particles: Microb Anal 4:177–200

  • Artyushkov EV, Soboley SV (1984) Physics of the kimberlite magmatism. In: Kornprobst J (ed) Kimberlites I: kimberlites and related rocks Proceedings of the Third International Kimberlite Conference, pp 309–322

    Chapter  Google Scholar 

  • Aulbach S, Griffin WL, O’Reilly SY, McCandless TE (2004) Genesis and evolution of the lithospheric mantle beneath the Buffalo Head Terrane, Alberta (Canada). Lithos 77:413–451

    Article  Google Scholar 

  • Aulbach S, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J Petrol 48:1843–1873

    Article  Google Scholar 

  • Baertschi P (1976) Absolute 18O content of standard mean ocean water. Earth Planet Sc Lett 31:341–344

    Article  Google Scholar 

  • Beard BL, Fraracci KN, Taylor LA et al (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Mineral Petrol 125:293–310

    Article  Google Scholar 

  • Benoit M, Polvé M, Ceuleneer G (1996) Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chem Geol 134:199–214

    Article  Google Scholar 

  • Bina CR, Helffrich G (2014) Geophysical constraints on mantle composition. In: Holland H, Turekian K (eds) Treatise on geochemistry, 2nd edn. Elsevier, pp 41–65

  • Clayton RN, Goldsmith JR, Karel KJ, Mayeda TK, Robert C. N (1975) Limits on the effect of pressure on isotopic fractionation. Geochim Cosmochim Acta 39:1197–1201

    Article  Google Scholar 

  • Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and Eclogites: their differences and similarities. Geol Soc Am Bull 76:483–508

    Article  Google Scholar 

  • Collerson KD, Lewry JF, Bickford ME, Van Schmus WR (1990) Crustal evolution of the buried Precambrian of southern Saskatchewan: implications for diamond exploration. In: Beck LS, Harper CT (eds) Modern Exploration Techniques. Saskatchewan Geological Society, pp 150–165

  • Czas J, Pearson DG, Stachel T, et al (2015) Is there an Archean lithospheric mantle root beneath the Sask Craton, Canada? Constraints from peridotite xenoliths in the Fort à la Corne kimberlite field. In: Joint Assembly AGU-GAC-MAC-CGU. Abstracts. Montreal, Abstract No 35482

  • Davies RM, Griffin WL, O’Reilly SY, McCandless TE (2004) Inclusions in diamonds from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume? Lithos 77:99–111

    Article  Google Scholar 

  • Day HW (2012) A revised diamond-graphite transition curve. Am Mineral 97:52–62

    Article  Google Scholar 

  • De Stefano A, Kopylova MG, Cartigny P, Afanasiev V (2009) Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contrib Mineral Petrol 158:295–315

    Article  Google Scholar 

  • Dludla S, le Roex AP, Gurney JJ (2006) Eclogite xenoliths from the Premier kimberlite, South Africa: geochemical evidence for a subduction origin. S Afr J Geol 109:353–368

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Article  Google Scholar 

  • Fortier SM, Giletti B (1989) An empirical model for predicting diffusion coefficients in silicate minerals. Science 245:1481–1484

    Article  Google Scholar 

  • Gréau Y, Huang JX, Griffin WL, Renac C, Alard O, O’Reilly SY (2011) Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim Cosmochim Acta 75:6927–6954

    Article  Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18 O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res-Sol Ea 86:2737–2755

    Article  Google Scholar 

  • Griffin WL, Smith D, Boyd FR, Cousens DR, Ryan CG, Sie SH, Suter GF (1989) Trace element zoning in garnets from sheared mantle xenoliths. Geochim Cosmochim Acta 53:561–567

    Article  Google Scholar 

  • Griffin W, O’Reilly S, Ryan C (1999a) The composition and origin of subcontinental lithospheric mantle. In: Fei Y, Bertka C, Mysen B (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R (Joe) Boyd. Special Publication No. 6. The Geochemical Society, Houston, pp 13–45

    Google Scholar 

  • Griffin W, Shee S, Ryan C et al (1999b) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib Mineral Petrol 134:232–250

    Article  Google Scholar 

  • Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857

    Article  Google Scholar 

  • Harte B, Hunter R, Kinny P (1993) Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Philos T R Soc A 342:1–21

    Google Scholar 

  • Harvey S, Kjarsgaard B, McClintock M, Shimell M, Fourie L, Plessis PD, Read G (2009) Geology and evaluation strategy of the Star and Orion South kimberlites, Fort à la Corne, Canada. Lithos 112:47–60

    Article  Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sc Lett 307:59–70

    Article  Google Scholar 

  • Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397

    Article  Google Scholar 

  • Helmstaedt H, Doig R (1975) Eclogite nodules from kimberlite pipes of the Colorado Plateau—samples of subducted Franciscan-type oceanic lithosphere. Phys Chem Earth 9:95–111

    Article  Google Scholar 

  • Hoffman PF (1988) United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annu Rev Earth Pl Sc 16:543–603

    Article  Google Scholar 

  • Howell D, Piazolo S, Dobson DP, Wood IG, Jones AP, Walte N, Frost DJ, Fisher D, Griffin WL (2012) Quantitative characterization of plastic deformation of single diamond crystals: a high pressure high temperature (HPHT) experimental deformation study combined with electron backscatter diffraction (EBSD). Diam Relat Mater 30:20–30

    Article  Google Scholar 

  • Huang JX, Gréau Y, Griffin WL, O'Reilly SY, Pearson NJ (2012) Multi-stage origin of Roberts Victor eclogites: progressive metasomatism and its isotopic effects. Lithos 142–143:161–181

    Article  Google Scholar 

  • Ickert RB, Stern RA (2013) Matrix corrections and error analysis in high-precision SIMS 18O/16O measurements of Ca-Mg-Fe garnet. Geostand Geoanal Res 37:429–448

    Article  Google Scholar 

  • Ickert RB, Stachel T, Stern RA, Harris JW (2013) Diamond from recycled crustal carbon documented by coupled δ18O-δ13C measurements of diamonds and their inclusions. Earth Planet Sc Lett 364:85–97

    Article  Google Scholar 

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–316

    Article  Google Scholar 

  • Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Acta 58:5191–5207

    Article  Google Scholar 

  • Jacob DE, Viljoen KS, Grassineau NV (2009) Eclogite xenoliths from Kimberley, South Africa — a case study of mantle metasomatism in eclogites. Lithos 112:1002–1013

    Article  Google Scholar 

  • Jagoutz E, Dawson JB, Hoernes S et al (1984) Anorthositic oceanic crust in the Archean Earth. Lunar Planet Sc 15:395–396

    Google Scholar 

  • Jerde EA, Taylor LA, Crozaz G, Sobolev NV, Sobolev VN (1993) Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contrib Mineral Petr 114:189–202

    Article  Google Scholar 

  • Kjarsgaard BA (2007) Kimberlite diamond deposits. In: Goodfellow WD (ed) Mineral Deposists of Canada: a synthesis of major deposit-types, district Metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, pp 245–272

  • Korolyuk VN, Lepezin GG (2008) Analysis of experimental data on the diffusion coefficients of Fe, Mn, Mg, and Ca in garnets. Russ Geol Geophys 49:557–569

    Article  Google Scholar 

  • Krogh EJ (1988) The garnet-clinopyroxene Fe-Mg geothermometer - a reinterpretation of existing experimental data. Contrib Mineral Petrol 99:44–48

    Article  Google Scholar 

  • Lawless PJ, Gurney JJ, Dawson JB (1979) Polymict peridotites from the Bultfontein and de Beers mines, Kimberly, South Africa. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other volcanics. American Geophysical Union, Washington, DC, pp 144–155

    Google Scholar 

  • MacGregor ID, Carter JL (1970) The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys Earth Planet Inter 3:391–397

    Article  Google Scholar 

  • McDonough WF (1991) Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Philos T R Soc A 335:407–418

    Google Scholar 

  • McDonough W, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mercier J-CC (1979) Peridotite xenoliths and the dynamics of kimberlite intrusion. In: Boyd FR, Meyer H (eds) The mantle sample: inclusion in kimberlites and other Volcanics. American Geophysical Union, Washington, D. C, pp 197–212

    Chapter  Google Scholar 

  • Merry M, le Roex A (2007) Megacryst suites from the Lekkerfontein and Uintjiesberg kimberlites, southern Africa: evidence for a non-cognate origin. S Afr J Geol 110:597–610

    Article  Google Scholar 

  • Moore AE, Lock NP (2001) The origin of mantle-derived megacrysts and sheared peridotites-evidence from kimberlites in the northern Lesotho - Orange Free State (South Africa) and Botswana pipe clusters. S Afr J Geol 104:23–38

    Article  Google Scholar 

  • Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789

    Article  Google Scholar 

  • Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159:411–427

    Article  Google Scholar 

  • O’Hara MJ, Yoder HS (1967) Formation and fractionation of basic magmas at high pressures. Scottish J Geol 3:67–117

    Article  Google Scholar 

  • Pallister JS, Knight RJ (1981) Rare-earth element geochemistry of the Samail Ophiolite near Ibra, Oman. J Geophys Res-Sol Ea 86:2673–2697

    Article  Google Scholar 

  • Pearson DG, Nixon PH (1996) Diamonds in young orogenic belts: graphitised diamonds from Beni Bousera, N. Morocco, a comparison with kimberlite-derived diamond occurrences and implications for diamond genesis and exploration. African Geosci Rev 3:295–316

    Google Scholar 

  • Pittari A, Cas RAF, Lefebvre N, Robey J, Kurszlaukis S, Webb K (2008) Eruption processes and facies architecture of the Orion Central kimberlite volcanic complex, Fort à la Corne, Saskatchewan; kimberlite mass flow deposits in a sedimentary basin. J Volcanol Geoth Res 174:152–170

    Article  Google Scholar 

  • Presnall DC, Gudfinnsson GH, Walter MJ (2002) Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochim Cosmochim Acta 66:2073–2090

    Article  Google Scholar 

  • Rayner NM, Stern RA, Bickford ME (2005) Tectonic implications of new SHRIMP and TIMS U-Pb geochronology of rocks from the Sask Craton, Peter Lake Domain, and Hearne margin, Trans-Hudson Orogen, Saskatchewan. Can J Earth Sci 42:635–657

    Article  Google Scholar 

  • Riches AJV, Ickert RB, Pearson DG, Stern RA, Jackson SE, Ishikawa A, Kjarsgaard BA, Gurney JJ (2016) In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal Craton. Geochim Cosmochim Acta 174:345–359

    Article  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sc Lett 114:463–475

    Article  Google Scholar 

  • Schulze DJ (1989) Constraints on the abundance of eclogite in the upper mantle. J Geophys Res-Sol Earth 94:4205–4212

    Article  Google Scholar 

  • Shimizu N, Richardson SH (1987) Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochim Cosmochim Ac 51:755–758

    Article  Google Scholar 

  • Shu Q, Brey GP (2015) Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet Sc Lett 418:27–39

    Article  Google Scholar 

  • Stachel T, Harris J, Tappert R, Brey GP (2003) Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71:489–503

    Article  Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS(F) (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19

    Article  Google Scholar 

  • Taylor L (1996) Eclogitic inclusions in diamonds: evidence of complex mantle processes over time. Earth Planet Sc Lett 142:535–551

    Article  Google Scholar 

  • Viljoen F, Dobbe R, Harris J, Smit B (2010) Trace element chemistry of mineral inclusions in eclogitic diamonds from the Premier (Cullinan) and Finsch kimberlites, South Africa: implications for the evolution of their mantle source. Lithos 118:156–168

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Star Diamond Corp. (formerly Shore Gold Inc.) for their kind sample donations. Andrew Locock and Yan Luo are thanked for their support during major and trace element analysis, respectively. Discussions with Pedro Waterton and Matt Hardman greatly improved the manuscript. We are grateful to the editor Jingao Liu, and the reviewers Gareth Davies and Gerhard Brey for their constructive reviews. Funding for this study was received from an NSERC (Discovery) grant to TS and a CERC grant to DGP. 11 IKC is thanked for providing a travel grant to JC to present this study at the Kimberlite Conference in Botswana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Czas.

Additional information

Editorial handling: J. Liu

Electronic supplementary material

ESM 1

(DOCX 5607 kb)

ESM 2

(XLS 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czas, J., Stachel, T., Pearson, D.G. et al. Diamond brecciation and annealing accompanying major metasomatism in eclogite xenoliths from the Sask Craton, Canada. Miner Petrol 112 (Suppl 1), 311–323 (2018). https://doi.org/10.1007/s00710-018-0590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0590-y

Keywords

Navigation