Skip to main content
Log in

Ultradeep diamonds originate from deep subducted sedimentary carbonates

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Diamonds are renowned as the record of Earth’s evolution history. Natural diamonds on the Earth can be distinguished in light of genetic types as kimberlitic diamonds (including peridotitic diamonds and eclogitic diamonds), ultrahigh-pressure metamorphic diamonds and ophiolitic diamonds. According to the inclusion mineralogy, most diamonds originated from continental lithospheric mantle at depths of 140–250 km. Several localities, however, yield ultradeep diamonds with inclusion compositions that require a sublithospheric origin (>~250 km). Ultradeep diamonds exhibit distinctions in terms of carbon isotope composition, N-concentration, mineral inclusions and so on. The present study provides a systematic compilation concerning the features of ultradeep diamonds, based on which to expound their genesis affinity with mantle-carbonate melts. The diamond-parental carbonate melts are proposed to be stemmed from the Earth’s crust through subduction of oceanic lithosphere. Ultradeep diamonds are classified into a subgroup attaching to kimberlitic diamonds grounded by formation mechanism, and present connections in respect of carbon origin to eclogitic diamonds, ultrahigh-pressure metamorphic diamonds and ophiolitic diamonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt J C, Teagle D A H. 1999. The uptake of carbon during alteration of ocean crust. Geochim Cosmochim Acta, 63: 1527–1535

    Article  Google Scholar 

  • Arima M, Kozai Y, Akaishi M. 2002. Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions. Geology, 30: 691–694

    Article  Google Scholar 

  • Bayarjargal L, Shumilova T G, Friedrich A, Winkler B. 2010. Diamond formation from CaCO3 at high pressure and temperature. Eur J Mineral, 22: 29–34

    Article  Google Scholar 

  • Bobrov A V, Litvin Y A. 2009. Peridotite-eclogite-carbonatite systems at 7.0–8.5 GPa: Concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions. Russ Geol Geophys, 50: 1221–1233

    Article  Google Scholar 

  • Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende A L, Perrillat J P, Guyot F, Fiquet G. 2011. New host for carbon in the deep Earth. Proc Natl Acad Sci USA, 108: 5184–5187

    Article  Google Scholar 

  • Boyd F R, Gurney J J. 1986. Diamonds and the African Lithosphere. Science, 232: 472–477

    Article  Google Scholar 

  • Brenker F E, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F. 2007. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett, 260: 1–9

    Article  Google Scholar 

  • Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 160: 489–510

    Article  Google Scholar 

  • Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F. 1996. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon, 34: 141–153

    Article  Google Scholar 

  • Cartigny P. 2005. Stable isotopes and the origin of diamond. Elements, 1: 79–84

    Article  Google Scholar 

  • Collerson K D, Williams Q, Ewart A E, Murphy D T. 2010. Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: The role of CO2-fluxed lower mantle melting in thermochemical upwellings. Phys Earth Planet Inter, 181: 112–131

    Article  Google Scholar 

  • Daniels L R M, Gurney J J, Harte B. 1996. A crustal mineral in a mantle diamond. Nature, 379: 153–156

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85

    Article  Google Scholar 

  • Dobretsov N L, Shatskiy A F. 2012. Deep carbon cycle and geodynamics: The role of the core and carbonatite melts in the lower mantle. Russ Geol Geophys, 53: 1117–1132

    Article  Google Scholar 

  • Dobrzhinetskaya L F, Wirth R, Green II H W. 2007. A look inside of diamond- forming media in deep subduction zones. Proc Natl Acad Sci USA, 104: 9128–9132

    Article  Google Scholar 

  • Dobrzhinetskaya L F, Wirth R, Green H W, Schreiber A, O’Bannon E. 2013. First find of polycrystalline diamond in ultrahigh-pressure metamorphic terrane of Erzgebirge, Germany. J Metamorph Geol, 31: 5–18

    Article  Google Scholar 

  • Evans T. 1992). Aggregation of nitrogen in diamond. In: Field J E. ed. The Properties of Natural and Synthetic Diamond. London: Academic Press. 259–290

    Google Scholar 

  • Farfan G, Wang S, Ma H, Caracas R, Mao W L. 2012. Bonding and structural changes in siderite at high pressure. Am Miner, 97: 1421–1426

    Article  Google Scholar 

  • Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M. 2002. Structural refinements of magnesite at very high pressure. Am Miner, 87: 1261–1265

    Article  Google Scholar 

  • Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 4: 703–706

    Article  Google Scholar 

  • Fukao Y, Obayashi M, Nakakuki T. 2009. Stagnant slab: A Review. Annu Rev Earth Planet Sci, 37: 19–46

    Article  Google Scholar 

  • Galimov E M. 1991. Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim Cosmochim Acta, 55: 1697–1708

    Article  Google Scholar 

  • Gao J, Wu X, Qin S. 2015. Stability of carbonates and its implications to genesis of diamond during oceanic crust subduction processes (in Chinese). J Jilin U-Earth Sci Ed, 45(suppl): 1–2

    Google Scholar 

  • Gao J, Wu X, Qin S, Zhang S, Yang K, Li X D. 2016. Compressibility and electronic structure of natural siderite under high pressure (in Chinese with English abstract). Acta Petrol Mineral, 35: 1–7

    Google Scholar 

  • Harte B. 2010. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag, 74: 189–215

    Article  Google Scholar 

  • Harte B, Fitzsimons I C W, Harris J W, Otter L. 1999. Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa. Mineral Mag, 63: 829–856

    Article  Google Scholar 

  • Harte B, Richardson S. 2012. Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland. Gondwana Res, 21: 236–245

    Article  Google Scholar 

  • Hazen R M, Hemley R J, Mangum A J. 2012. Carbon in Earth’s interior: Storage, cycling, and life. Eos Trans AGU, 93: 17–18

    Article  Google Scholar 

  • Hutchison M T. 1998. Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions. Doctoral Dissertation. Edinburgh: University of Edinburgh

    Google Scholar 

  • Javoy M. 1997. The major volatile elements of the Earth: Their origin, behavior, and fate. Geophys Res Lett, 24: 177–180

    Article  Google Scholar 

  • Kaminsky F. 2012. Mineralogy of the lower mantle: A review of ‘superdeep’ mineral inclusions in diamond. Earth-Sci Rev, 110: 127–147

    Article  Google Scholar 

  • Kaminsky F V, Wirth R. 2011. Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Canadian Miner, 49: 555–572

    Article  Google Scholar 

  • Kaminsky F V, Wirth R, Schreiber A. 2013. Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: New minerals in the carbonatehalide association. Can Mineral, 51: 669–688

    Article  Google Scholar 

  • Lavina B, Dera P, Downs R T, Prakapenka V, Rivers M, Sutton S, Nicol M. 2009. Siderite at lower mantle conditions and the effects of the pressureinduced spin-pairing transition. Geophys Res Lett, 36: L23306

    Article  Google Scholar 

  • Lavina B, Dera P, Downs R T, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D. 2010. Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B, 82: 064110

    Article  Google Scholar 

  • Leost I, Stachel T, Brey G P, Harris J W, Ryabchikov I D. 2003. Diamond formation and source carbonation: Mineral associations in diamonds from Namibia. Contrib Mineral Petrol, 145: 15–24

    Article  Google Scholar 

  • Li B, Liebermann R C. 2014. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry. Phys Earth Planet Inter, 233: 135–153

    Article  Google Scholar 

  • Li L, Zheng Y F, Zhou G T, Gong B, Fu B, Zhao Z F. 2001. Carbon and oxygen isotope analyses of minor carbonate in silicate rocks and their applications (in Chinese with English abstract). Bull Mineral Petrol Geochem, 20: 437–440

    Google Scholar 

  • Li S G. 2015. Tracing deep carbon recycling by Mg isotopes (in Chinese with English abstract). Earth Sci Front, 22: 143–159

    Google Scholar 

  • Lin J F, Liu J, Jacobs C, Prakapenka V B. 2012. Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Miner, 97: 583–591

    Article  Google Scholar 

  • Litvin Y, Spivak A, Solopova N, Dubrovinsky L. 2014. On origin of lowermantle diamonds and their primary inclusions. Phys Earth Planet Inter, 228: 176–185

    Article  Google Scholar 

  • Liu J, Lin J F, Prakapenka V B. 2015. High-Pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep, 5: 7640

    Article  Google Scholar 

  • Liu L, Lin C C, Yang Y J. 2001. Formation of diamond by decarbonation of MnCO3. Solid State Commun, 118: 195–198

    Article  Google Scholar 

  • Liu P L, Wu Y, Liu Q, Jin Z M. 2014. Carbon cycling in subduction zones and its significance for the geodynamic processes in deep Earth (in Chinese with English abstract). Geol Sci Tech Inf, 33: 25–35

    Google Scholar 

  • Liu Y, He D, Gao C, Foley S, Gao S, Hu Z, Zong K, Chen H. 2015. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths. Sci Rep, 5: 11547

    Article  Google Scholar 

  • Liu Z R, Zhang Z G. 2015. Densities and compressibilities of calcium-carbonate melts under the mantle condition (in Chinese with English abstract). J Univ Chinese Acad Sci, 32: 356–362

    Google Scholar 

  • Luth R W. 1995. Experimental determination of the reaction dolomite + 2 coesite = diopside + 2 CO2 to 6 GPa. Contrib Mineral Petrol, 122: 152–158

    Article  Google Scholar 

  • Luth R W. 2001. Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa. Contrib Mineral Petrol, 141: 222–232

    Article  Google Scholar 

  • Mao Z, Armentrout M, Rainey E, Manning C E, Dera P, Prakapenka V B, Kavner A. 2011. Dolomite III: A new candidate lower mantle carbonate. Geophys Res Lett, 38: L22303

    Google Scholar 

  • Martirosyan N S, Litasov K D, Shatskiy A, Ohtani E. 2015). The reactions between iron and magnesite at 6 GPa and 1273–1873 K: Implication to reduction of subducted carbonate in the deep mantle. J Mineral Petrological Sci, 110: 49–59

    Article  Google Scholar 

  • Merlini M, Crichton W A, Hanfland M, Gemmi M, Muller H, Kupenko I, Dubrovinsky L. 2012. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc Natl Acad Sci USA, 109: 13509–13514

    Article  Google Scholar 

  • Nagai T, Ishido T, Seto Y, Nishio-Hamane D, Sata N, Fujino K. 2010. Pressure- induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements. J Phys-Conf Ser, 215: 012002

    Article  Google Scholar 

  • Oganov A R, Glass C W, Ono S. 2006. High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet Sci Lett, 241: 95–103

    Article  Google Scholar 

  • Palyanov Y N, Bataleva Y V, Sokol A G, Borzdov Y M, Kupriyanov I N, Reutsky V N, Sobolev N V. 2013. Mantle-slab interaction and redox mechanism of diamond formation. Proc Natl Acad Sci USA, 110: 20408–20413

    Article  Google Scholar 

  • Palyanov Y N, Sokol A G, Borzdov Y M, Khokhryakov F, Sobolev N V. 2002. Diamond formation through carbonate-silicate interaction. Am Miner, 87: 1009–1013

    Article  Google Scholar 

  • Qin G J, Ou Q, Chang X. 2001. Review of the recent progresses on impact structures in China and abroad (in Chinese with English abstract). Earth Sci Front, 8: 345–352

    Google Scholar 

  • Rohrbach A, Ballhaus C, Golla–Schindler U, Ulmer P, Kamenetsky V S, Kuzmin D V. 2007. Metal saturation in the upper mantle. Nature, 449: 456–458

    Article  Google Scholar 

  • Rohrbach A, Schmidt M W. 2011. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature, 472: 209–212

    Article  Google Scholar 

  • Sato K, Katsura T. 2001. Experimental investigation on dolomite dissociation into aragonite+magnesite up to 8.5 GPa. Earth Planet Sci Lett, 184: 529–534

    Article  Google Scholar 

  • Schindler T L, Vohra Y K. 1995. A micro-Raman investigation of highpressure quenched graphite. J Phys-Condens Matter, 7: L637–L642

    Article  Google Scholar 

  • Shatsky V S, Zedgenizov D A, Ragozin A L. 2016. Evidence for a subduction component in the diamond-bearing mantle of the Siberian craton. Russ Geol Geophys, 57: 111–126

    Article  Google Scholar 

  • Shatsky V S, Zedgenizov D A, Ragozin A L, Kalinina V V. 2014. Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: Implications for diamond origins. Eur J Mineral, 26: 41–52

    Article  Google Scholar 

  • Shilobreeva S, Martinez I, Busigny V, Agrinier P, Laverne C. 2011. Insights into C and H storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D. Geochim Cosmochim Acta, 75: 2237–2255

    Article  Google Scholar 

  • Shirasaka M, Takahashi E, Nishihara Y, Matsukage K, Kikegawa T. 2002. In situ X-ray observation of the reaction dolomite = aragonite + magnesite at 900–1300 K. Am Miner, 87: 922–930

    Article  Google Scholar 

  • Shirey S B, Cartigny P, Frost D J, Keshav S, Nestola F, Nimis P, Pearson D G, Sobolev N V, Walter M J. 2013. Diamonds and the geology of mantle carbon. Rev Mineral Geochem, 75: 355–421

    Article  Google Scholar 

  • Shirey S B, Richardson S H. 2011. Start of the Wilson Cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333: 434–436

    Article  Google Scholar 

  • Smith E M, Kopylova M G, Peck W. 2014. Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle. Can J Earth Sci, 51: 510–516

    Article  Google Scholar 

  • Sobolev N V, Logvinova A M, Zedgenizov D A, Seryotkin Y V, Yefimova E S, Floss C, Taylor L A. 2004. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: A comparative study. Lithos, 77: 225–242

    Article  Google Scholar 

  • Solopova N A, Dubrovinsky L, Spivak A V, Litvin Y A, Dubrovinskaia N. 2015. Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys Chem Miner, 42: 73–81

    Article  Google Scholar 

  • Spivak A V, Dubrovinskii L S, Litvin Y A. 2011. Congruent melting of calcium carbonate in a static experiment at 3500 K and 10–22 GPa: Its role in the genesis of ultradeep diamonds. Dokl Earth Sci, 439: 1171–1174

    Article  Google Scholar 

  • Spivak A, Solopova N, Cerantola V, Bykova E, Zakharchenko E, Dubrovinsky L, Litvin Y. 2014. Raman study of MgCO3-FeCO3 carbonate solid solution at high pressures up to 55 GPa. Phys Chem Miner, 41: 633–638

    Article  Google Scholar 

  • Spivak A, Solopova N, Dubrovinsky L, Litvin Y. 2015. Melting relations of multicomponent carbonate MgCO3-FeCO3-CaCO3-Na2CO3 system at 12–26 GPa: Application to deeper mantle diamond formation. Phys Chem Miner, 42: 817–824

    Article  Google Scholar 

  • Stachel T, Brey G P, Harris J W. 2005. Inclusions in sublithospheric diamonds: Glimpses of deep Earth. Elements, 1: 73–78

    Article  Google Scholar 

  • Stachel T, Harris J W. 2009. Formation of diamond in the Earth’s mantle. J Phys-Condens Matter, 21: 364206

    Article  Google Scholar 

  • Stachel T, Harris J W, Aulbach S, Deines P. 2002. Kankan diamonds (Guinea) III: d13C and nitrogen characteristics of deep diamonds. Contrib Mineral Petrol, 142: 465–475

    Article  Google Scholar 

  • Stachel T, Harris J W, Brey G P. 1998. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib Mineral Petrol, 132: 34–47

    Article  Google Scholar 

  • Stachel T, Harris J W, Brey G P, Joswig W. 2000. Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contrib Mineral Petrol, 140: 16–27

    Article  Google Scholar 

  • Stagno V, Tange Y, Miyajima N, Mc Cammon C A, Irifune T, Frost D J. 2011. The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophys Res Lett, 38: L19309

    Article  Google Scholar 

  • Tao R, Zhang L, Fei Y, Liu Q. 2014. The effect of Fe on the stability of dolomite at high pressure: Experimental study and petrological observation in eclogite from southwestern Tianshan, China. Geochim Cosmochim Acta, 143: 253–267

    Article  Google Scholar 

  • Tappert R, Foden J, Stachel T, Muehlenbachs K, Tappert M, Wills K. 2009. Deep mantle diamonds from South Australia: A record of Pacific subduction at the Gondwanan margin. Geology, 37: 43–46

    Article  Google Scholar 

  • Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76–79

    Article  Google Scholar 

  • Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334: 54–57

    Article  Google Scholar 

  • Wang A, Pasteris J D, Meyer H O A, Dele-Duboi M L. 1996. Magnesitebearing inclusion assemblage in natural diamond. Earth Planet Sci Lett, 141: 293–306

    Article  Google Scholar 

  • Wang Y J, Panzik J E, Kiefer B, Lee K K M. 2012. Crystal structure of graphite under room-temperature compression and decompression. Sci Rep, 2: srep00520

    Google Scholar 

  • Xiao H Y, Liu C Q, Huang J L. 2001. Information of old Mantle from inclusions in diamonds (in Chinese with English abstract). Adv Earth Sci, 16: 244–250

    Google Scholar 

  • Yang J S, Xu X Z, Bai W J, Zhang Z M, Rong H. 2014. Features of diamond in ophiolite (in Chinese with English abstract). Acta Petrol Sin, 30: 2113–2124

    Google Scholar 

  • Yang J S, Xu X Z, Li Y, Li J Y, Ba D Z, Rong H, Zhang Z M. 2011. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence (in Chinese with English abstract). Acta Petrol Sin, 27: 3171–3178

    Google Scholar 

  • Yang J S, Xu X Z, Zhang Z M, Rong H, Li Y, Xiong F H, Liang F H, Liu Z, Liu F, Li J Y, Li Z L, Chen S Y, Guo G L, Robinson P. 2013. Ophiolitetype diamond and deep genesis of chromitite (in Chinese with English abstract). Acta Geosci Sin, 34: 643–653

    Google Scholar 

  • Yang J S, Xu Z Q, Pei X Z, Shi R D, Wu C L, Zhang J X, Li H B, Meng F C, Rong H. 2002. Discovery of diamond in North Qinling: Evidence for a Giant UHPM Belt across central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze Plates (in Chinese with English abstract). Acta Petrol Sin, 76: 484–495

    Google Scholar 

  • Yang J S, Xu Z Q, Zhang J X, Zhang Z M, Liu F L, Wu C L. 2009. Tectonic setting of main high- and ultrahigh-pressure metamorphic belts in China and adjacent region and discussion on their subduction and exhumation mechanism (in Chinese with English abstract). Acta Petrol Sin, 25: 1529–1560

    Google Scholar 

  • Yang X M, Yang X Y, Zheng Y F, Le Bas M J. 2003. A rare earth element-rich carbonatite dyke at Bayan Obo, Inner Mongolia, North China. Mineral Petrol, 78: 93–110

    Article  Google Scholar 

  • Zhang Z M, Yang J S, Rong H, Hu J Z, Su J F, Mao H K. 2007. Discovery of diamond in eclogite from the Chinese Continental Scientific Drilling Project Main Hole (CCSD-MH) in the Sulu UHPM belt (in Chinese with English abstract). Acta Petrol Sin, 23: 3201–3206

    Google Scholar 

  • Zhang Z, Zhang H F. 2011. Diamond and deep carbon cycle (in Chinese with English abstract). Earth Sci Front, 18: 268–283

    Google Scholar 

  • Zhao X, Shi G H, Zhang J. 2015. Review of lithospheric diamonds and their mineral inclusions (in Chinese with English abstract). Adv Earth Sci, 30: 310–322

    Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Article  Google Scholar 

  • Zhu Y, Ogasawara Y. 2002. Carbon recycled into deep Earth: Evidence from dolomite dissociation in subduction-zone rocks. Geology, 30: 947–950

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers, who put forward constructive comments to help improve the manuscript. This work was supported by National Natural Science Foundation of China (Grant Nos. U1232204 & 41473056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Niu, J., Qin, S. et al. Ultradeep diamonds originate from deep subducted sedimentary carbonates. Sci. China Earth Sci. 60, 207–217 (2017). https://doi.org/10.1007/s11430-016-5151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5151-4

Keywords

Navigation