Skip to main content

Advertisement

Log in

Evaluation of oxidative stress and genotoxicity of 900 MHz electromagnetic radiations using Trigonella foenum-graecum test system

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract 

Unprecedented growth in the communication sector and expanded usage of the number of wireless devices in the past few decades have resulted in a tremendous increase in emissions of non-ionizing electromagnetic radiations (EMRs) in the environment. The widespread EMRs have induced many significant changes in biological systems leading to oxidative stress as well as DNA damage. Considering this, the present study was planned to study the effects of EMRs at 900 MHz frequency with the power density of 10.0 dBm (0.01 W) at variable exposure periods (0.5 h, 1 h, 2 h, 4 h, and 8 h per day for 7 days) on percentage germination, morphological characteristics, protein content, lipid peroxidation in terms of malondialdehyde content (MDA), and antioxidant defense system of Trigonella foenum-graecum test system. The genotoxicity was also evaluated using similar conditions. It was observed that EMRs significantly decreased the germination percentage at an exposure time of 4 h and 8 h. Fresh weight and dry weight of root and shoot did not show significant variations, while the root and shoot length have shown significant variations for 4 h and 8 h exposure period. Further, EMRs enhanced MDA indicating lipid peroxidation. In response to exposure of EMRs, there was a significant up-regulation in the activities of enzymes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione-S-transferase (GST), guaiacol peroxidase (POD), and glutathione reductase (GR) in the roots and shoots of Trigonella-foenum graecum. The genotoxicity study showed the induction of chromosomal aberrations in root tip cells of the Trigonella foenum-graecum test system. The present study revealed the induction of oxidative stress and genotoxicity of EMRs exposure in the test system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akbal A, Kiran Y, Sahin A, Turgut-Balik D, Balik HH (2012) Effects of electromagnetic waves emitted by mobile phones on germination, root growth and root tip cell mitotic division of Lens culinaris Medik. Pol J Environ Stud 21(1):23–29

    Google Scholar 

  • Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ (2019) Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol and Med 38(1):32–47

    Article  Google Scholar 

  • Al-Rumaih MM, Al-Rumaih MM (2008) Influence of ionizing radiation on antioxidant enzymes in three species of Trigonella. Am J Environ Sci 4(2):151

    Article  Google Scholar 

  • Azmy R, Shamloul R, Elsawy NAF, Elkholy S, Maher E (2020) Effects of mobile phones electromagnetic radiations on patients with epilepsy: an EEG study. Egypt J Neurol Psychiatr Neurosurg 56(1):1–9

    Article  Google Scholar 

  • Baan R, Grosse Y, Lauby - Secretan B, Ghissassi F EL, Bouvard V, Benbrahim-Tallaa L, Straif K, (2011) Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 12(7):624–626

    Article  Google Scholar 

  • Barteri M, Diociaiuti M, Pala A, Rotella S (2004) Low frequency ultrasound induces aggregation of porcine fumarase by free radicals production. Biophys Chem 111(1):35–42

    Article  Google Scholar 

  • Bhargavi K, Balachandrudu KE, Nageswar P (2013) Mobile phone radiation effects on human health. Int J Comput Eng Res 3(4):196–203

    Google Scholar 

  • Bhawan MD, Marg JLN (2014) Effects of electromagnetic field radiation from mobile towers and handsets. TRAI 01/2014-QoS.

  • Borzouei A, Kafi M, Khazaei H, Naseriyan B, Majdabadi A (2010) Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pak J Bot 42(4) 2281–2290.

  • Cammaerts MC, Johansson O (2015) Effect of man-made electromagnetic fields on common Brassicaceae Lepidium sativum (cress d’Alinois) seed germination: a preliminary replication study. J Ex Bot 84(1):132–137

    Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250(14):5475–5480

    Article  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Bio 35(4):1011–1019

    Article  Google Scholar 

  • Chandel S, Kaur S, Singh HP, Batish DR, Kohli RK (2017) Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa roots. J Microsc Ultrastruct 5(4):225–229

    Article  Google Scholar 

  • Chandel S, Kaur S, Issa M, Singh HP, Batish DR, Kohli RK (2019) Exposure to mobile phone radiations at 2350 MHz incites cytotoxic and genotoxic effects in root meristems of Allium cepa. J Environ Health Sci 17(1):97–104

    Google Scholar 

  • Chen H-Y, Chen C (2014) Effects of mobile phone radiation on germination and early growth of different bean species. Pol J Environ Stud 23(6):1949–1958

    Google Scholar 

  • Choudhary S, Ansari MYK, Khan Z, Gupta H (2012) Cytotoxic action of lead nitrate on cytomorphology of Trigonella foenum-graecum L. Turk J Biol 36(3):267–273

    Google Scholar 

  • Corson LB, Folmer J, Strain JJ, Culotta VC, Cleveland DW (1999) Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu. Zn-Superoxide Dismutase J Biol Chem 274(39):27590–27596

    Article  Google Scholar 

  • De Souza PR, da Costa TC, Vargas VMF (2013) Investigation of sensitivity of the Allium cepa test as an alert system to evaluate the genotoxic potential of soil contaminated by heavy metals. Water, Air and Soil Pollut 224(3):1–10

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  Google Scholar 

  • Goel MS, Duhan M, Singh G (2016) Comparative analysis of impact of radiation from mobile phone on human brain activity: GSM 2G vs GSM 3G. IJBSBT 8(3):149–158

    Article  Google Scholar 

  • Grémiaux A, Girard S, Guérin V, Lothier J, Baluška F, Davies E, Vian A (2016) Low-amplitude, high-frequency electromagnetic field exposure causes delayed and reduced growth in Rosa hybrida. J Plant Physiol 190:44–53

    Article  Google Scholar 

  • Gustavino B, Carboni G, Petrillo R, Paoluzzi G, Santovetti E, Rizzoni M (2016) Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips. Mutagenesis 31(2):187–192

    Article  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione -S-transferases. Meth Enzymol 77:398–405

    Article  Google Scholar 

  • Haider T, Knasmueller S, Kundi M, Haider M (1994) Clastogenic effects of radiofrequency radiations on chromosomes of Tradescantia. Mutat Res Lett 324(1–2):65–68

    Article  Google Scholar 

  • Halgamuge MN (2017) Weak radiofrequency radiation exposure from mobile phone radiation on plants. Electromagn Biol Med 36(2):213–235

    Article  Google Scholar 

  • Halgamuge MN, Yak SK, Eberhardt JL (2015) Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station. Bioelectromagnetics 36(2):87–95

    Article  Google Scholar 

  • Hardell L, Koppel T (2022) Electromagnetic hypersensitivity close to mobile phone base stations–a case study in Stockholm, Sweden. Rev Environ Health.

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem 125(1) 189–198.

  • International Commission on Non-Ionizing Radiation Protection (2017) ICNIRP statement on diagnostic devices using non-ionizing radiation existing regulations and potential health risks. Health Phys 112(3):305–321

    Article  Google Scholar 

  • ITU (International Telecommunication Union). http://www.itu.int/en/ITU-D/https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx. (Accessed on 10.02.2022).

  • Jorgensen TJ, Moscovitch M (2011) Communicating radiation risks to the public. Radiat Prot Dosimetry 145(4):339–340

    Article  Google Scholar 

  • Kaur S, Vian A, Chandel S, Singh HP, Batish DR, Kohli RK (2021) Sensitivity of plants to high frequency electromagnetic radiation: cellular mechanisms and morphological changes. Rev Environ Sci Biotechnol 20:55–74

    Article  Google Scholar 

  • Kim KH, Kabir E, Jahan SA (2016) The use of cell phone and insight into its potential human health impacts. Environ Monit Assess 188(4):1–11

    Article  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem 186(1):189–195

    Article  Google Scholar 

  • Kumar G, Srivastava N (2011) Genotoxic effects of two commonly used food additives of boric acid and sunset yellow in root meristems of Trigonella foenum-graecum. J Environ Health Sci 8(4):361–366

    Google Scholar 

  • Kumar G, Kesarwani S, Sharma V (2003) Clastogenic effect of individual and combined treatment of Gamma rays and EMS in Lens culinary. Cytol Genet 4:149–154

    Google Scholar 

  • Kumar A, Singh HP, Batish DR, Kaur S, Kohli RK (2016) EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea Mays) involves alterations in starch and sucrose metabolism. Protoplasma 253(4):1043–1049

    Article  Google Scholar 

  • Kumar A, Kaur S, Chandel S, Singh HP, Batish DR, Kohli RK (2020) Comparative cyto-and genotoxicity of 900 MHz and 1800 MHz electromagnetic field radiations in root meristems of Allium cepa. Ecotoxicol Environ Saf 188:109786

    Article  Google Scholar 

  • Leaver MJ, George SG (1998) A piscine glutathione-S-transferase which efficiently conjugates the end-products of lipid peroxidation. Mar Environ Res 46(1–5):71–74

    Article  Google Scholar 

  • Lee S, Johnson D, Dunbar K, Dong H, Ge X, Kim YC (2005) 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 579(21) 4829–4836.

  • Loprieno N. Letter: International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risk of chemicals to man (1975) “Relevance of data on mutagenicity.” Mutat Res Jun 31(3):210

  • Lewicka M, Henrykowska GA, Pacholski K, Śmigielski J, Rutkowski M, Dziedziczak-Buczyńska M, Buczyński A (2015) The effect of electromagnetic radiation emitted by display screens on cell oxygen metabolism–in vitro studies. Arch Med Sci 11(6):1330

    Article  Google Scholar 

  • Liu W, Zheng X, Qu Z, Zhang M, Zhou C, Ma L, Zhang Y (2012) Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation. J Huazhong Uni Sci Technol 32(5):755–759

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  Google Scholar 

  • Malik JA (2020) Effects of electromagnetic radiation of mobile phones on the human brain. In book: Mobile devices and smart gadgets in medical sciences (97–120). IGI Global.

  • Marjanović AM, Pavičić I, Trošić I (2012) Biological indicators in response to radiofrequency/microwave exposure. AIHT 63(3):407–416

    Google Scholar 

  • Mohamed WA, Ismail SA, Abd El-Hakim YM (2014) Spirulina platensis ameliorative effect against GSM 900-MHz cellular phone radiation-induced genotoxicity in male Sprague-Dawley rats. Com Clin Path 23(6):1719–1726

    Article  Google Scholar 

  • Mohril S, Sankhla MS, Chaturvedi B and Kumar R (2016) Hazardous effect of mobile phone radiation on human health—a review. Int J Electron Commun 4(10)

  • Mudigoudra S, Ragi K, Kadennavar M, Danashetty N, Sajjanar P, Patil AY, Sridhar M, Suresh HK, Kotturshettar BB (2020) Reduction effect of electromagnetic radiation emitted from mobile phones on human head using electromagnetic shielding materials. J. Phys. Conf. Series 2020 Dec 1 (Vol. 1706, No. 1, p. 012184). IOP Publishing.

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    Google Scholar 

  • Panagopoulos DJ, Karabarbounis A, Lioliousis C (2013) ELF alternating magnetic field decreases reproduction by DNA damage induction. Cell Biochem Biophys 67(2):703–716

    Article  Google Scholar 

  • Paulraj R, Behari J (2002) The effect of low level continuous 2.45 GHz waves on enzymes of developing rat brain. Electromagn Biol Med 21(3) 221–231.

  • Penuelas J, Llusia J, Martínez B, Fontcuberta J (2004) Diamagnetic susceptibility and root growth responses to magnetic fields in Lens culinaris, Glycine soja, and Triticum aestivum. Electromagn Biol Med 23(2):97–112

    Article  Google Scholar 

  • Pesnya DS, Romanovsky AV (2013) Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat Res/genet Toxicol Environ Mutagen 750(1–2):27–33

    Article  Google Scholar 

  • Prokhorova IM, Kovaleva MI, Fomicheva AN, Babanazarova OV (2008) Spatial and temporal dynamics of mutagenic activity of water in lake Nero. Inland Water Biol 1(3):1–25

    Google Scholar 

  • Qamer Z, Chaudhary MT, Xiongming DU, Hinze L, Azhar MT (2021) Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. J Cotton Res 4(1) 1–9.

  • Rageh MM, El-Gebaly RH, El-Bialy NS (2012) Assessment of genotoxic and cytotoxic hazards in brain and bone marrow cells of new-born rats exposed to extremely low-frequency magnetic field. J Biomed Biotechnol 2012:716023

    Article  Google Scholar 

  • Redlarski G, Lewczuk B, Żak A, Koncicki A, Krawczuk M, Piechocki J, Jakubiuk K, Tojza P (2015) The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. BioMed Res Int 2015:1–18

    Article  Google Scholar 

  • Repacholi MH (2003) An overview of WHO’s EMF project and the health effects of EMF exposure. Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR 2003) Electromagnetic Fields and Our Health October 20–22, 2003.

  • Rieder CL, Cole R (2000) Microtubule disassembly delays the G2–M transition in vertebrates. Curr 10(17):1067–1070

    Article  Google Scholar 

  • Ruediger HW (2009) Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 6(2):89–102

    Article  Google Scholar 

  • Sanchez M, Revilla G, Zarra I (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann Bot 75(4):415–419

    Article  Google Scholar 

  • Sepehrimanesh M, Azarpira N, Saeb M, Nazifi S, Kazemipour N, Koohi O (2014a) Pathological changes associated with experimental 900-MHz electromagnetic wave exposure in rats. Comp Clin Pathol 23(5):1629–1631

    Article  Google Scholar 

  • Sepehrimanesh M, Kazemipour N, Saeb M, Nazifi S (2014b) Analysis of rat testicular proteome following 30-day exposure to 900 MHz electromagnetic field radiation. Electrophoresis 35(23):3331–3338

    Article  Google Scholar 

  • Sepehrimanesh M, Nazifi S, Saeb M, Kazemipour N (2016) Effect of 900 MHz radiofrequency electromagnetic field exposure on serum and testicular tissue antioxidant enzymes of rat. J Vet Res 20(9):617–624

    Google Scholar 

  • Sharma S, Parihar L (2014) Effect of mobile phone radiation on nodule formation in the leguminous plants. Curr World Environ 9(1):145

    Article  Google Scholar 

  • Sharma A, Kesari KK, Saxena VK, Sisodia R (2017) Ten gigahertz microwave radiation impairs spatial memory, enzymes activity and histopathology of developing mice brain. Mol Cell Biochem 435(1):1–13

    Article  Google Scholar 

  • Singh HP, Sharma VP, Batish DR, Kohli RK (2012) Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ Monit Assess 184(4):1813–1821

    Article  Google Scholar 

  • Tkalec M, Malarić K, Pevalek-Kozlina B (2007) Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci Tot Environ 388(1–3):78–89

    Article  Google Scholar 

  • Tkalec M, Malarić K, Pavlica M, Pevalek-Kozlina B, Vidaković-Cifrek Ž (2009) Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutat Res/genet Toxicol Environ Mutagen 672(2):76–81

    Article  Google Scholar 

  • Tyagi A, Duhan M, Bhatia D (2011) Effect of mobile phone radiation on brain activity GSM vs CDMA. IJSTM 2(2):1–5

    Google Scholar 

  • Velizarov S, Raskmark P, Kwee S (1999) The effects of radiofrequency fields on cell prolife ration are non-thermal. Bioelectrochem and Bioenergetics 48(1):177–180

    Article  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Article  Google Scholar 

  • Verschaeve L, Maes A (1998) Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutat Res/rev in Mutat Res 410(2):141–165

    Article  Google Scholar 

  • Vian A, Davies E, Gendraud M, Bonnet P (2016) Plant responses to high frequency electromagnetic fields. BioMed Research Int 2016:1–13

    Article  Google Scholar 

  • Wang H, Zhang X (2017) Magnetic fields and reactive oxygen species. Int J Mol Sci 18(10):2175

    Article  Google Scholar 

  • Wang HY, Li CF, Yu C, Dong J, Zou Y, Nie BB, Peng RY, Ma L, Li JK (2019) The specific absorption rate in different brain regions of rats exposed to electromagnetic plane waves. Sci Rep 9(1):1–13

    Google Scholar 

  • Zeman EM (2016) The biological basis of radiation oncology. J Clin Radiat Oncol 4th ed. Philadelphia PA 2–40.

Download references

Funding

The authors received financial support from the Rashtriya Uchchatar Shiksha Abhiyan 2.0 (Ministry of Human Resource Development, Government of India), University Grant Commission, DRS-SAP, DST-FIST, and UPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatinder Kaur Katnoria.

Ethics declarations

Ethics approval.

The ethical approval was not needed.

Consent for publication.

The authors declare consent for publication in Protoplasma.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Peter Nick.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Bahel, S. & Kaur Katnoria, J. Evaluation of oxidative stress and genotoxicity of 900 MHz electromagnetic radiations using Trigonella foenum-graecum test system. Protoplasma 260, 209–224 (2023). https://doi.org/10.1007/s00709-022-01768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-022-01768-9

Keywords

Navigation