Skip to main content
Log in

Polyphosphate accumulation dynamics in a population of Synechocystis sp. PCC 6803 cells under phosphate overplus

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In this study, a simple and rapid DAPI-based protocol was developed and optimized to visualize polyphosphates (polyPs) in the cyanobacterium Synechocystis sp. PCC 6803. The optimum dye concentration and incubation time were determined, and formaldehyde fixation was shown to significantly improve polyP detection in Synechocystis cells. Using the developed protocol, for the first time, it was shown that 80% of Synechocystis cells under phosphate overplus were able to accumulate phosphorus as polyP 3 min after the addition of K2HPO4. After 1 h, the number of cells with polyP began to decrease, and after 24 h, polyP granules were detected in only 30% of the cells. Thus, the Synechocystis cells appeared to be heterogeneous in their ability to accumulate and mobilize polyP. Like other photosynthetic organisms, Synechocystis synthesized less polyP in the dark than in the light. The accumulation of polyP was not inhibited under conditions of cold and heat stresses, and some cells were even able to synthesize polyP at a temperature of approximately 0 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-diamidino-2-phenylindole

FITC:

Fluorescein isothiocyanate

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

polyP(s):

Polyphosphate(s)

GA:

Glutaraldehyde

FА:

Formaldehyde

PBS:

Phosphate-buffered saline

References

  • Albi T, Serrano A (2016) Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol 32:27. https://doi.org/10.1007/s11274-015-1983-2

    Article  CAS  PubMed  Google Scholar 

  • Allan RA, Miller JJ (1980) Influence of S-adenosylmethionine on DAPI-induced fluorescence of polyphosphate in the yeast vacuole. Can J Microbiol 26:912–920

    Article  CAS  PubMed  Google Scholar 

  • Andreeva N, Ryazanova L, Dmitriev V, Kulakovskaya T, Kulaev I (2014) Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola. Folia Microbiol 59:381–389. https://doi.org/10.1007/s12223-014-0310-x

    Article  CAS  Google Scholar 

  • Aschar-Sobbi R, Abramov AY, Diao C, Kargacin ME, Kargacin GJ, French RJ, Pavlov E (2008) High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J Fluoresc 18:859–866. https://doi.org/10.1007/s10895-008-0315-4

    Article  CAS  PubMed  Google Scholar 

  • Ault-Riche D, Kornberg A (1999) Definitive enzymatic assays in polyphosphate analysis. In: Schröder HC, Müller WEG (eds) Inorganic Polyphosphates: Biochemistry, Biology, Biotechnology. Progress in molecular and subcellular biology, vol 23. Springer-Verlag Berlin Heidelberg, New York, pp 253–274. doi:https://doi.org/10.1007/978-3-642-58444-2

  • Chen KY (1999) Study of polyphosphate metabolism in intact cells by 31-P nuclear magnetic resonance spectroscopy. In: Schröder HC, Müller WEG (eds) Inorganic Polyphosphates: Biochemistry, Biology, Biotechnology.Progress in molecular and subcellular biology, vol 23. Springer-Verlag Berlin Heidelberg, New York, pp 241–252. doi:https://doi.org/10.1007/978-3-642-58444-2

  • Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9:264–272

    CAS  Google Scholar 

  • Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Developments in applied phycology vol 6. Springer, Cham, pp 155–183. https://doi.org/10.1007/978-3-319-24945-2_8

    Chapter  Google Scholar 

  • Eixler S, Selig U, Karsten U (2005) Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms. Hydrobiologia 533:135–143

    Article  CAS  Google Scholar 

  • Falkner R, Falkner G (2003) Distinct adaptivity during phosphate uptake by the cyanobacterium Anabaena variabilis reflects information processing about preceding phosphate supply. J Trace Microprobe T 21:363–375. https://doi.org/10.1081/tma-120020271

    Article  CAS  Google Scholar 

  • Falkner G, Falkner R (2011) The complex regulation of the phosphate uptake system of cyanobacteria. In: Peschek G, Obinger C, Renger G (eds) Bioenergetic processes of cyanobacteria. Springer, Dordrecht, pp 109–130. https://doi.org/10.1007/978-94-007-0388-9_4

    Chapter  Google Scholar 

  • Falkner G, Falkner R, Schwab AJ (1989) Bioenergetic characterization of transient state phosphate uptake by the cyanobacterium Anacystis nidulans. Arch Microbiol 152:353–361

    Article  CAS  Google Scholar 

  • Falkner G, Wagner F, Falkner R (1996) The bioenergetic coordination of a complex biological system is revealed by its adaptation to changing environmental conditions. Acta Biotheor 44:283–299

    Article  Google Scholar 

  • Fuszard MA et al (2013) The quantitative proteomic response of Synechocystis sp. PCC 6803 to phosphate acclimation. Aqua Biosys 93:5

    Article  CAS  Google Scholar 

  • Gomes FM, Ramos IB, Wendt C, Girard-Dias W, De Souza W, Machado EA, Miranda K (2013) New insights into the in situ microscopic visualization and quantification of inorganic polyphosphate stores by 4′,6-diamidino-2-phenylindole (DAPI)-staining. Eur J Histochem 57:e34. https://doi.org/10.4081/ejh.2013.e34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Garcı́a MR, Losada M, Serrano A (2003) Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochem Biophys Res Commun 302:601–609. https://doi.org/10.1016/s0006-291x(03)00162-1

    Article  PubMed  Google Scholar 

  • Gray MJ, Wholey WY, Wagner NO, Cremers CM, Mueller-Schickert A, Hock NT, Krieger AG, Smith EM, Bender RA, Bardwell JCA, Jakob U (2014) Polyphosphate is a primordial chaperone. Mol Cell 53:689–699. https://doi.org/10.1016/j.molcel.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grillo JF, Gibson J (1979) Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus. J Bacteriol 140:508–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Groenestijn JW, Vlekke G, Anink DME, Deinema MH, Zehnder AJB (1988) Role of cations in accumulation and release of phosphate by Acinetobacter strain 210A. Appl Environ Microbiol 54:2894–2901

    PubMed  PubMed Central  Google Scholar 

  • Hudson JJ, Taylor WD, Schindler DW (2000) Phosphate concentrations in lakes. Nature 406:54–56. https://doi.org/10.1038/35017531

    Article  CAS  PubMed  Google Scholar 

  • Hurley BA, Tran HT, Marty NJ, Park J, Snedden WA, Mullen RT, Plaxton WC (2010) The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation. Plant Physiol 153:1112–1122. https://doi.org/10.1104/pp.110.153270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamur MC, Oliver C (2010) Cell fixatives for immunostaining. In: Oliver C, Jamur MC (eds) Immunocytochemical methods and protocols. Methods in molecular biology, third edn. Humana Press, New York, pp 55–61

    Chapter  Google Scholar 

  • Jensen TE (1968) Electron microscopy of polyphosphate bodies in a blue-green alga, Nostoc pruniforme. Arch Microbiol 62:144–152

    Google Scholar 

  • Jensen TE, Baxter M (1985) Imaging cell inclusions in air dried unfixed cyanobacteria with a transmission electron microscope at 75 kV. Microb Let 28:145–150

    Article  Google Scholar 

  • Juntarajumnong W, Eaton-Rye JJ, Incharoensakdi A (2007a) Two-component signal transduction in Synechocystis sp. PCC 6803 under phosphate limitation: role of acetyl phosphate. J Biochem Mol Biol 40:708–714

    CAS  PubMed  Google Scholar 

  • Juntarajumnong W, Hirani TA, Simpson JM, Incharoensakdi A, Eaton-Rye JJ (2007b) Phosphate sensing in Synechocystis sp. PCC 6803: SphU and the SphS-SphR two-component regulatory system. Arch Microbiol 188:389–402. https://doi.org/10.1007/s00203-007-0259-0

    Article  CAS  PubMed  Google Scholar 

  • Knowles V, Plaxton W (2013) Quantification of total and soluble inorganic phosphate. Bio-protocol 3(17):e890. https://doi.org/10.21769/BioProtoc.890

    Article  Google Scholar 

  • Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic poylphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  CAS  PubMed  Google Scholar 

  • Kulaev IS, Kulakovskaya TV, Andreeva NA, Lichko LP (1999) Metabolism and function of polyphosphates in bacteria and yeast. In: Schröder HC, Müller WEG (eds) Inorganic Polyphosphates: Biochemistry, Biology, Biotechnology. Progress in molecular and subcellular biology, vol 23. Springer-Verlag Berlin Heidelberg, New York, pp 27–43. doi:https://doi.org/10.1007/978-3-642-58444-2

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates, Second edn. John Wiley and Sons, Chichester, UK

    Book  Google Scholar 

  • Kulakova AN, Hobbs D, Smithen M, Pavlov E, Gilbert JA, Quinn JP, McGrath JW (2011) Direct quantification of inorganic polyphosphate in microbial cells using 4′-6-diamidino-2-phenylindole (DAPI). Environ Sci Technol 45:7799–7803. https://doi.org/10.1021/es201123r

    Article  CAS  PubMed  Google Scholar 

  • Lawrence BA, Suarez C, DePina A, Click E, Kolodny NH, Allen MM (1998) Two internal pools of soluble polyphosphate in the cyanobacterium Synechocystis sp. strain PCC 6308: an in vivo 31P NMR spectroscopic study. Arch Microbiol 169:195–200

    Article  CAS  PubMed  Google Scholar 

  • Lawry NH, Jensen TE (1979) Deposition of condensed phosphate as an effect of varying sulfur deficiency in the cyanobacterium Synechococcus sp. (Anacystis nidulans). Arch Microbiol 120:1–7

    Article  CAS  Google Scholar 

  • Lorenz B, Schröder HC (1999) Methods for Investigation of Inorganic Polyphosphates and Polyphosphate-Metabolizing Enzymes. In: Schröder HC, Müller WEG (eds) Inorganic Polyphosphates: Biochemistry, Biology, Biotechnology. Progress in molecular and subcellular biology, vol 23. Springer-Verlag Berlin Heidelberg, New York, pp 217–240. doi:https://doi.org/10.1007/978-3-642-58444-2

  • Martin P, Van Mooy BA (2013) Fluorometric quantification of polyphosphate in environmental plankton samples: extraction protocols, matrix effects, and nucleic acid interference. Appl Environ Microbiol 79:273–281. https://doi.org/10.1128/AEM.02592-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez R (1963) On the nature of the granules of the genus Spirillum. Arch Microbiol 44:334–343

    Google Scholar 

  • Pitt FD, Mazard S, Humphreys L, Scanlan DJ (2010) Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium. J Bacteriol 192:3512–3523. https://doi.org/10.1128/JB.00258-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao NN, Kornberg A (1999) Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. In: Schröder HC, Müller WEG (eds) Inorganic Polyphosphates: Biochemistry, Biology, Biotechnology. Progress in molecular and subcellular biology, vol 23. Springer-Verlag Berlin Heidelberg, New York, pp 183-196. doi:https://doi.org/10.1007/978-3-642-58444-2

  • Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647. https://doi.org/10.1146/annurev.biochem.77.083007.093039

    Article  CAS  PubMed  Google Scholar 

  • Reusch RN (1999) Polyphosphate/Poly-(R)-3-hydroxybutyrate ion channels in cell membranes. In: Schröder HC, Müller WEG (eds) Inorganic Polyphosphates: Biochemistry, Biology, Biotechnology. Progress in molecular and subcellular biology, vol 23. Springer-Verlag Berlin Heidelberg, New York, pp 151–182 doi:https://doi.org/10.1007/978-3-642-58444-2

  • Saha R, Liu D, Hoynes-O'Connor A, Liberton M et al (2016) Diurnal regulation of cellular processes in the cyanobacterium Synechocystis sp. strain PCC 6803: insights from transcriptomic, fluxomic, and physiological analyses. mBio 7:e00464–e00416. https://doi.org/10.1128/mBio.00464-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Ohtomo R, Kuga-Uetake Y, Aono T, Saito M (2005) Direct labeling of polyphosphate at the ultrastructural level in Saccharomyces cerevisiae by using the affinity of the polyphosphate binding domain of Escherichia coli exopolyphosphatase. Appl Environ Microbiol 71:5692–5701. https://doi.org/10.1128/AEM.71.10.5692-5701.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serebriiskaya TS, Los DA (2004) Functional characterization of the slr1944 gene of cyanobacterium Synechocystis sp. PCC 6803. Russ J Plant Physiol 51:774–783

    Article  CAS  Google Scholar 

  • Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O (2017) Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254:1323–1340. https://doi.org/10.1007/s00709-016-1024-5

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Rao NN, Kornberg A (2004) Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Proc Natl Acad Sci U S A 101:17061–17065. https://doi.org/10.1073/pnas.0407787101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siderius M, Musgrave A, van den Ende H, Koerten H, Cambier P, van der Meer P (1996) Chlamydomonas eugametos (Chlorophyta) stores phosphate in polyphosphate bodies together with calcium. J Phycol 32:402–409

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Streichan M, Golecki JR, Schön G (1990) Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal. FEMS Microbiol Ecol 73:113–124

    Article  CAS  Google Scholar 

  • Suzuki S, Ferjani A, Suzuki I, Murata N (2004) The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J Biol Chem 279:13234–13240. https://doi.org/10.1074/jbc.M313358200

    Article  CAS  PubMed  Google Scholar 

  • Tijssen JPF, Beekes HW, Van Steveninck J (1982) Localization of polyphosphate in Saccharomyces fragilis, as revealed by 4,6-diamidino-2-phenylindole fluorescence. Biochem Biophys Acta 721:394–398

    Article  CAS  PubMed  Google Scholar 

  • Tsang TK, Roberson RW, Vermaas WF (2013) Polyhydroxybutyrate particles in Synechocystis sp. PCC 6803: facts and fiction. Photosynth Res 118:37–49. https://doi.org/10.1007/s11120-013-9923-1

    Article  CAS  PubMed  Google Scholar 

  • Whitton BA, Potts M (2012) Introduction to the cyanobacteria. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 1–13

    Chapter  Google Scholar 

  • Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J (2015a) Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng Life Sci 15:122–132. https://doi.org/10.1002/elsc.201300165

    Article  CAS  Google Scholar 

  • Zavřel T, Sinetova MA, Červený J (2015b) Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-protocol 5:e1467

    Article  Google Scholar 

Download references

Acknowledgments

In this work, the large-scale research facilities of the Collection of microalgae and cyanobacteria IPPAS (Institute of Plant Physiology RAS, Moscow, Russia) were used.

Funding

This work was supported by the Russian Scientific Foundation (grant no. 14-14-00904).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MS, AV; performed the experiments: MS; performed the microscopic examination: AV; analyzed the data: AV, MS; wrote the paper: MS, AV. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maria Sinetova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Andreas Holzinger

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronkov, A., Sinetova, M. Polyphosphate accumulation dynamics in a population of Synechocystis sp. PCC 6803 cells under phosphate overplus. Protoplasma 256, 1153–1164 (2019). https://doi.org/10.1007/s00709-019-01374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01374-2

Keywords

Navigation