Skip to main content
Log in

Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP (2017) The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 1–17

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    Article  PubMed  CAS  Google Scholar 

  • Azooz MM, Ahmad P (2016) Plant-environment interaction: responses and approaches to mitigate stress. John Wiley & Sons

  • Bai L, Wang P, Song CP (2014) Reactive Oxygen Species (ROS) and ABA Signalling. In: Abscisic Acid: Metabolism, Transport and Signaling. Springer, Netherlands, p 191–223

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, Mueller-Roeber B (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4(2):346–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balazadeh S, Wu A, Mueller-Roeber B (2010) Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signal Behav 5(6):733–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K (2017) Evolution of hormone signaling networks in plant defense. Ann Rev Phytopath

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blume YB, Krasylenko Y A, Yemets, A I (2017) The role of the plant cytoskeleton in phytohormone signaling under abiotic and biotic stresses. Mechanism of plant hormone signaling under stress, p 127–185

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Zhang C (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23(3):873–894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner WG, Ramireddy E Heyl A, Schmülling T (2012) Gene regulation by cytokinin in Arabidopsis. Fron Plant Sci 3:8

    CAS  Google Scholar 

  • Burgess P, Huang B (2016) Mechanisms of hormone regulation for drought tolerance in plants. In: Drought stress tolerance in plants, vol 1. Springer International Publishing, p 45–75

  • Cha JY, Kim WY, Kang SB, Kim JI, Baek D, Jung IJ (2015) A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat Commun 6:8041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J 68(1):168–185

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Nolan T, Ye H, Zhang M, Tong H, Xin P, Yin Y (2017b) Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response. Plant Cell 29(6):1425–1439

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ (2015a) MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol Cell 59(5):719–731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen QF, Xu L, Tan WJ, Chen L, Qi H, Xie LJ, Chen MX, Liu BY, Yu LJ, Yao N, Zhang JH (2015b) Disruption of the Arabidopsis defense regulator genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance. Mol Plant 8(10):1536–1549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Zhu X, Ren J, Qiu K, Li Z, Xie Z, Kuai B (2017a) Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf Degreening and senescence by directly repressing Pheophytinase and other senescence-associated genes in Arabidopsis. Plant Physiol, pp-01457 173:1881–1891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Y, Guan J (2014) Involvement of pheophytinase in ethylene-mediated chlorophyll degradation in the peel of harvested ‘Yali’pear. J Plant Growth Regul 33(2):364–372

    Article  CAS  Google Scholar 

  • Cheng CY, Kieber JJ (2015) Signaling: cytokinin signaling. Mol Biol 1–19

  • Chini A, Gimenez-Ibanez S, Goossens A, Solano R (2016) Redundancy and specificity in jasmonate signalling. Curr Opin Plant Biol 33:147–156

    Article  PubMed  CAS  Google Scholar 

  • Christiansen MW, Matthewman C, Podzimska-Sroka D, O’Shea C, Lindemose S, Møllegaard NE, Holme IB, Hebelstrup K, Skriver K, Gregersen PL (2016) Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. J Exp Bot 67(17):5259–5273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68(1-2):81–92

  • da Costa LC, Finger FL (2016) Flower opening and vase life of gladiolus cultivars: the sensitivity to ethylene and the carbohydrate content. Ornam Hortic 22(2):147–153

    Article  Google Scholar 

  • Dalman K, Wind JJ, Nemesio-Gorriz M, Hammerbacher A, Lundén K, Ezcurra I, Elfstrand M (2017) Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC Plant Biol 17(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dani KGS, Fineschi S, Michelozzi M, Loreto F (2016) Do cytokinins, volatile isoprenoids and carotenoids synergically delay leaf senescence? Plant Cell Environ

  • Dani KGS, Jamie IM, Prentice IC, Atwell BJ (2014) Evolution of isoprene emission capacity in plants. Trends Plant Sci 19:439–446

    Article  PubMed  CAS  Google Scholar 

  • Danisman S, Van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, Angenent GC (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159(4):1511–1523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delatorre CA, Cohen Y, Liu L, Peleg Z, Blumwald E (2012) The regulation of the SARK promoter activity by hormones and environmental signals. Plant Sci 193:39–47

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Qin P, Liu Z, Wang G, Chen W, Tong J, He H (2017) Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiol Biochem 111:50–58

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65(14):3783–3798

    Article  PubMed  Google Scholar 

  • Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Inzé D (2013) ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol 162(1):319–332

  • Dubois M, Van den Broeck L, Claeys H, Van Vlierberghe K, Matsui M, Inzé D (2015) The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol, pp-00335

  • Edlund E, Novak O, Karady M, Ljung K, Jansson S (2017) Contrasting patterns of cytokinins between years in senescing aspen leaves. Plant Cell Environ 40(5):622–634

    Article  PubMed  CAS  Google Scholar 

  • Fan ZQ, Tan XL, Shan W, Kuang JF, Lu WJ, Chen JY (2017) BrWRKY65, a WRKY transcription factor, is involved in regulating three leaf senescence-associated genes in Chinese flowering cabbage. Int J Mol Sci 18(6):1228

    Article  PubMed Central  CAS  Google Scholar 

  • Fedina E, Yarin A, Mukhitova F, Blufard A, Chechetkin I (2017) Brassinosteroid-induced changes of lipid composition in leaves of Pisum sativum L. during senescence. Steroids 117:25–28

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Xu Q, Wang Z, Zhuoma Q (2016) AINTEGUMENTA negatively regulates age-dependent leaf senescence downstream of AUXIN RESPONSE FACTOR 2 in Arabidopsis thaliana. Plant Biotechnol 33(2):71–76

    Article  CAS  Google Scholar 

  • Fischer AM (2012) The complex regulation of senescence. Crit Rev Plant Sci 31(2):124–147

    Article  CAS  Google Scholar 

  • Gan SS, Hörtensteiner S (2013) Frontiers in plant senescence research: from bench to bank. Plant Mol Biol 82:503–504

    Article  PubMed  CAS  Google Scholar 

  • Garapati P, Xue GP, Munné-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168(3):1122–1139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46(4):601–612

    Article  PubMed  CAS  Google Scholar 

  • Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H (2017) A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell, tpc-00438

  • Goossens J, Fernández-Calvo P, Schweizer F, Goossens A (2016) Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91:673–689

  • Have M, Marmagne A, Chardon F, Masclaux-Daubresse C (2016) Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops. J Exper Bot 68(10):2513–2529

    Google Scholar 

  • He Y, Gans S (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805–815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115

  • He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore JD, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A (2013) A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J 75(1):26–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoeberichts FA, Woltering EJ (2002) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. BioEss 25:47–57

    Article  CAS  Google Scholar 

  • Holland V, Koller S, Lukas S, Brüggemann W (2015) Drought-and frost-induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescens. Trees 1–12

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68(6):1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Wang Y, Wang S, Wu X, Yang K, Niu Y, Dai S (2012) Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium. Plant Sci 193:18–27

    Article  PubMed  CAS  Google Scholar 

  • Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins GS, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij FE, Bowles D, Poppenberger B (2011) Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol 11:51

  • Huysmans M, Lema S, Coll NS, Nowack MK (2017) Dying two deaths—programmed cell death regulation in development and disease. Curr Opin Plant Biol 35:37–44

    Article  PubMed  CAS  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plan 4(3):393–411

    CAS  Google Scholar 

  • Jensen MK, Lindemose S, De Masi F, Reimer JJ, Nielsen M, Perera V et al (2013) ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio 3(1):321–327

  • Jensen MK, Skriver K (2014) NAC transcription factor gene regulatory and protein–protein interaction networks in plant stress responses and senescence. IUBMB Life 66(3):156–166

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Liu J, Xing D (2016) Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity. J Exper Bot 67(17):5233–5245

    Article  CAS  Google Scholar 

  • Jing HC, Schippers JH, Hille J, Dijkwel PP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56(421):2915–2923

  • Jiang Y, Liang G, Yang S, Yu D (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid–and auxin-mediated signaling in jasmonic acid–induced leaf senescence. Plant Cell 26(1):230–245

  • Jiang G, Yan H, Wu F, Zhang D, Zeng W, Qu H, Chen F, Tan L, Duan X, Jiang Y (2017) Litchi fruit LcNAC1 is a target of LcMYC2 and regulator of fruit senescence through its interaction with LcWRKY1. Plant Cell Physiol 58(6):1075–1089

    Article  PubMed  CAS  Google Scholar 

  • Jibran R, Hunter DA, Dijkwel PP (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82(6):547–561

    Article  PubMed  CAS  Google Scholar 

  • Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxinup RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701

  • Kieber JJ, Schaller GE (2014) Cytokinins. Arabidopsis Book 12:e0168

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Hong SH, Kim YW, Lee IH, Jun JH, Phee BK, Rupak T, Jeong H, Lee Y, Hong BS, Nam HG (2014) Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signaling in Arabidopsis. J Exp Bot 65(14):4023–4036

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim Y, Yeom M, Lim J, Nam HG (2016a) Age-associated circadian period changes in Arabidopsis leaves. J Exp Bot 67(9):2665–2673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HJ, Nam HG, Lim PO (2016b) Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol 33:48–56

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Sakuraba Y, Han SH, Yoo SC, Paek NC (2013) Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiol 54(10):1660–1672

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Chang C, Tucker ML (2015) To grow old: regulatory role of ethylene and jasmonic acid in senescence. Front Plant Sci 6

  • Kim JH, Chung KM, Woo HR (2011) Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways. Genes Genomics 33:373–381

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Kou X, Watkins CB, Gan SS (2012) Arabidopsis AtNAP regulates fruit senescence. J Exp Bot 63(17):6139–6147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishna P, Prasad BD, Rahman T (2017) Brassinosteroid action in plant abiotic stress tolerance. Brassinosteroids: Meth Prot, p 193–202

  • Kumar MN, Verslues PE (2015) Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiol Plant 154(3):369–380

  • Kumar D, Haq I, Chapagai D, Tripathi D, Donald D, Hossain M, Devaiah S (2015) Hormone signaling: current perspectives on the roles of salicylic acid and its derivatives in plants. In: The formation, structure and activity of phytochemicals. Springer International Publishing, p 115–136

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G et al (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8(5):e64190

  • Lee IC, Hong SW, Whang SS, Lim PO, Nam HG, Koo JC (2011) Age-dependent action of an ABAinducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

  • Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J 70(5):831–844

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Chang Y, Zhao C, Yang H, Ren D (2016) Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence. J Integr Plant Biol 6(134):32–42

    Google Scholar 

  • Li Z, Wang J, Zhang X, Lei M, Fu Y, Zhang J et al (2016) Transcriptome sequencing determined flowering pathway genes in Aechmea fasciata treated with ethylene. J Plant Growth Regul 35(2):316–329

  • Li Z, Peng J, Wen X, Guo H (2013) ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311–3328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li QF, Wang C, Jiang L, Li S, Sun SS, He JX (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5(244):72–72

    Article  CAS  Google Scholar 

  • Liebsch D, Keech O (2016) Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. New Phytol 212(3):563–570

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindemose S, Jensen MK, de Velde JV, O'shea C, Heyndrickx KS, Workman CT, Masi FD (2014) A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Nucleic Acids Res 42(12):7681–7693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T, Longhurst AD, Talavera-Rauh F, Hokin SA, Barton MK (2016) The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. eLife 5:e13768

  • Lu G, Casaretto JA, Ying S, Mahmood K, Liu F, Bi YM, Rothstein SJ (2017) Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. Plant Mol Biol 94(1–2):215–227

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Greenberg JT, Holuigue L (2016) Salicylic acid signaling networks. Fron Plant Sci 7

  • MacMillan CP, Birke H, Chuah A, Brill E, Tsuji Y, Ralph J, Pettolino FA (2017) Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls. BMC Genet 18(1):539

    Article  CAS  Google Scholar 

  • Maillard A, Diquélou S, Billard V, Laîné P, Garnica M, Prudent M, Ourry A (2015) Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Sci 6

  • Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F (2017) A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 174(3):1747–1763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matallana-Ramirez LP, Rauf M, Farage-Barhom S, Dortay H, Xue GP, Dröge-Laser W, Mueller-Roeber B (2013) NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis. Mol Plant 6(5):1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Merewitz E, Xu Y, Huang B (2016) Differentially expressed genes associated with improved drought tolerance in creeping Bentgrass overexpressing a gene for cytokinin biosynthesis. PLoS One 11(11):e0166676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19(3):819–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller-Roeber B, Balazadeh S (2014) Auxin and its role in plant senescence. J Plant Growth Regul 33(1):21–33

    Article  CAS  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169(1):32–41

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31(3):203–216

    Article  Google Scholar 

  • Narsai R, Law SR, Carrie C, Xu L, Whelan J (2011) In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol 157(3):1342–1362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nawaz F, Naeem M, Zulfiqar B, Akram A, Ashraf MY, Raheel M et al (2017) Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review. Environ Sci Pollut Res 24(19):15959–15975

  • Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol 158(4):1847–1859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171(3):1581–1592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, Yin Y (2017) Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell 41(1):33–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey GK (ed) (2017) Mechanism of Plant Hormone Signaling Under Stress, 2 Volume Set (Vol. 1). John Wiley & Sons

  • Pandey N, Iqbal Z, Pandey BK, Sawant SV (2017) Phytohormones and drought stress: plant responses to transcriptional regulation. Mechanism of Plant Hormone Signaling under Stress, p 477–504

  • Paparozzi ET, Chahal JK, Dobrev P, Claassen EA, Stroup WW, Vankova R (2016) Cytokinin dynamics during the response to nitrogen in two contrasting plectranthus genotypes. J Am Soc Hortic Sci 141(3):264–274

    Article  CAS  Google Scholar 

  • Pei H, Ma N, Tian J, Luo J, Chen J, Li J, Zheng Y, Chen X, Fei Z, Gao J (2013) An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol 163(2):775–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pimenta MR, Silva PA, Mendes GC, Alves JR, Caetano HDN, Machado JPB, Rosado GL (2016) The stress-induced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence. Plant Cell Physiol 57(5):1098–1114

    Article  PubMed  CAS  Google Scholar 

  • Podzimska-Sroka D, O'Shea C, Gregersen PL, Skriver K (2015) NAC transcription factors in senescence: from molecular structure to function in crops. Plants 4(3):412–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Tren Plant Sci 17(6):369–381

    Article  CAS  Google Scholar 

  • Qi T, Huang H, Song S, Xie D (2015) Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell 27:1620–1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 464:428–433

    Article  PubMed  CAS  Google Scholar 

  • Raines T, Shanks C, Cheng CY, McPherson D, Argueso CT, Kim HJ, Schaller GE (2016) The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant J 85(1):134–147

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy M, Narayanan J, Manickavachagam G, Athiappan S, Arun M, Gomathi R, Ram B (2017) Genome wide analysis of NAC gene family ‘sequences’ in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize and Arabidopsis for prediction of stress associated NAC genes. Agri Gene 3:1–11

    Article  Google Scholar 

  • Ramel F, Ksas B, Havaux M (2013) Jasmonate: a decision maker between cell death and acclimation in the response of plants to singlet oxygen. Plant Signal Behav 8(12):e26655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rauf M, Arif M, Dortay H, Matallana-Ramírez LP, Waters MT, Nam HG, Lim PO, Mueller-Roeber B, Balazadeh S (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 14(4):382–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163(4):1609–1622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276(17):4666–4681

  • Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B (1993a) A methyl jasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12(4):1505–1512

  • Reinbothe S, Reinbothe C, Parthier B (1993b) Methyl jasmonate represses translation initiation of a specific set of mRNAs in barley. Plant J 4(3):459–467

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci 104(49):19631–19636

    Article  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  PubMed  CAS  Google Scholar 

  • Sağlam-Çağ S (2007) The effect of epibrassinolide on senescence in wheat leaves. Biotechnol Biotechnol Equip 21(1):63–65

  • Saini S, Sharma I, Pati PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci 6

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    Article  PubMed  CAS  Google Scholar 

  • Sarwat M 2017 Leaf senescence in plants: nutrient remobilization and gene regulation. In: stress signaling in plants: genomics and proteomics perspective, volume 2. Springer International Publishing, p 301-316

  • Sarwat M, Naqvi AR, Ahmad P, Ashraf M, Akram NA (2013) Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules. Biotechnol Adv 31(8):1153–1171

    Article  PubMed  CAS  Google Scholar 

  • Scarpeci TE, Zanor MI, Mueller-Roeber B, Valle EM (2013) Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83(3):265–277

    Article  PubMed  CAS  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE et al (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):e230

  • Seo PJ, Park JM, Kang SK, Kim SG, Park CM (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233(1):189–200

    Article  PubMed  CAS  Google Scholar 

  • Shahnejat-Bushehri S, Allu AD, Mehterov N, Thirumalaikumar VP, Alseekh S, Fernie AR, Balazadeh S (2017) Arabidopsis NAC transcription factor JUNGBRUNNEN1 exerts conserved control over gibberellin and brassinosteroid metabolism and signaling genes in tomato. Front Plant Sci 8:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S (2016) Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nat Plants 2:16013

    Article  PubMed  CAS  Google Scholar 

  • Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261–273

    Article  PubMed  CAS  Google Scholar 

  • Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K, Inze D (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sklensky DE, Davies PJ (2011) Resource partitioning to male and female flowers of Spinacia oleracea L. in relation to whole-plant monocarpic senescence. J Exp Bot 62(12):4323–4336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song Y, Xiang F, Zhang G, Miao Y, Miao C, Song CP (2016) Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Front Plant Sci 7:181

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Yang C, Gao S, Zhang W, Li L, Kuai B (2014) Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol Plant 7(12):1776–1787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stamm P, Kumar PP (2013) Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Rep 32(6):759–769

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Hu S, Zhang B, Ye W, Niu Y, Guo L, Qian Q (2017) Characterization and fine mapping of a new early leaf senescence mutant es3 (t) in rice. Plant Growth Regul 81(3):419–431

    Article  CAS  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Balazadeh S 2017 NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197(3):696–711

    Article  PubMed  Google Scholar 

  • Thomas H, Ougham H (2014) The stay-green trait. J Exp Bot 65(14):3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Thu NBA, Hoang XLT, Truc MT, Sulieman S, Thao NP, Tran LSP (2017) Cytokinin signaling in plant response to abiotic stresses. Mechanism of Plant Hormone Signaling under Stress, 71–100

  • Uji Y, Akimitsu K, Gomi K (2017) Identification of OsMYC2-regulated senescence-associated genes in rice. Planta 245(6):1241–1246

    Article  PubMed  CAS  Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

  • Velasco-Arroyo, B., Diaz-Mendoza, M., Santamaria, M. E., Gonzalez-Melendi, P., Gomez-Sanchez, A., Arnaiz, A., Diaz, I., 2017. Senescence-associated genes in response to abiotic/biotic stresses. p 1–21

  • Wang F, Liu J, Chen M, Zhou L, Li Z, Zhao Q, Cheng F (2016) Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves. PLoS One 11(8):e0161203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wehner G, Balko C, Humbeck K, Zyprian E, Ordon F (2016) Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC Plant Biol 16(1):3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo HR, Kim JH, Kim J, Kim J, Lee U, Song IJ, Lim PO (2010) The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot 61(14):3947–3957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death–regulation by multiple layers of control and implications for aging in general. J Cell Sci 126(21):4823–4833

    Article  PubMed  CAS  Google Scholar 

  • Woolhouse HW, Batt T (2016) The nature and regulation of senescence in plastids. Perspec Exp Biol 2:163–175

    Google Scholar 

  • Woo HR, Koo HJ, Kim J, Jeong H, Yang JO, Lee IH et al (2016) Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis. Plant Physiol 171:452–467. https://doi.org/10.1104/pp.15.01929

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR (2012b) JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24(2):482–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu XY, Kuai BK, Jia JZ, Jing HC (2012a) Regulation of leaf senescence and crop genetic improvement. J Int Plant Biol 54(12):936–952

    Article  CAS  Google Scholar 

  • Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML (2010) Overexpression of Arabidopsis AcylCoA binding protein ACBP3 promotes starvation-induced and agedependent leaf senescence. Plant Cell 22:1463–1482

  • Xiao S, Chye ML (2011) Overexpression of Arabidopsis Acyl-CoA-Binding Protein 3 Enhances NPR1-Dependent Plant Resistance to Pseudomonas syringe pv. tomato DC3000. Plant Physiol, pp-111

  • Xiao XO, Zeng YM, Cao BH, Lei JJ, Chen QH, Meng CM, Cheng YJ (2017) PSAG12-IPT overexpression in eggplant delays leaf senescence and induces abiotic stress tolerance. The J Horticul Sci. Biotech 92(4):349–357

    CAS  Google Scholar 

  • Xie Y, Huhn K, Brandt R, Potschin M, Bieker S, Straub D, Wenkel S (2014) REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis. Development, dev-117689

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvementF. J Int Plant Biol 53(7):570–585

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26(10):1621–1631

  • Yang SD, Seo PJ, Yoon HK, Park CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23(6):2155–2168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Wang X, Ji L, Yi Z, Fu C, Ran J et al (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34(6):943–958

  • Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Wang Y (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8:14573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

  • Yu SM, Lo SF, Ho THD (2015) Source–sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20(12):844–857

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Wei J, Ma Q, Yu D, Li J (2009) Senescence of aerial parts is impeded by exogenous gibberellic acid in herbaceous perennial Paris polyphylla. J Plant Physiol 166(8):819–830

    Article  PubMed  Google Scholar 

  • Yu J, Zhang Y, Di C (2016) JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. J Exp Bot 67:751–762

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf U (2007) Oxidative stress and leaf senescence. In: Gan S (ed) Annual plant reviews: senescence processes in plants. Blackwell Publishing Ltd, Oxford, UK, p 26

  • Zhang K, Gan SS (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158(2):961–969

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Ju HW, Chung MS, Huang P, Ahn SJ, Kim CS (2011) The RR-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant Cell Physiol 52(1):138–148

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017a) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45

    Article  CAS  Google Scholar 

  • Zhang WY, Xu YC, Li WL, Yang L, Yue X, Zhang XS, Zhao XY (2014) Transcriptional analyses of natural leaf senescence in maize. PLoS One 9(12):e115617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang XM, Yu HJ, Sun C, Deng J, Zhang X, Liu P, Jiang WJ (2017b) Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus. Plant Physiol Biochem 113:98–109

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Yu G, Wen W, Ma X, Xu B, Huang B (2015) Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. J Exp Bot 67(3):935–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Zhao M, Song Q, Zhao L, Wang G, Zhou C (2016) Identification and function analyses of senescence-associated WRKYs in wheat. Biochem Biophys Res Commun 474(4):761–767

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Gong Y (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Nat Acad Sci 113(7):1949–1954

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Jiang Y, Yu D (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells 31(4):303–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu X, Chen J, Xie Z, Gao J, Ren G, Gao S et al (2015) Jasmonic acid promotes degreening via MYC 2/3/4-and ANAC 019/055/072-mediated regulation of major chlorophyll catabolic genes. Plant J 84(3):597–610

  • Zwack PJ, De Clercq I, Howton TC, Hallmark HT, Hurny A, Keshishian EA, Rashotte AM (2016) Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress. Plant Physiol 172(2):1249–1258

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zwack PJ, Rashotte AM (2013) Cytokinin inhibition of leaf senescence. Plant Signal Behav 8(7):e24737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Deanship of Scientific Research at King Saud University for funding this research group no. RG-1438-039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, S., Abbas, N., Ashraf, M. et al. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma 256, 313–329 (2019). https://doi.org/10.1007/s00709-018-1310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1310-5

Keywords

Navigation