Skip to main content
Log in

An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The plasma membrane is an important cellular organ that perceives incoming developmental and environmental signals and integrates these signals into cellular regulatory mechanisms. It also acts as a barrier against unfavorable extracellular factors to maintain cell viability. Despite its importance for cell viability, molecular components determining cell viability and underlying mechanisms are largely unknown. Here, we show that a plasma membrane-localized MtN3 protein SAG29 regulates cell viability under high salinity in Arabidopsis. The SAG29 gene is expressed primarily in senescing plant tissues. It is induced by osmotic stresses via an abscisic acid-dependent pathway. Whereas the SAG29-overexpressing transgenic plants (35S:SAG29) exhibited an accelerated senescence and were hypersensitive to salt stress, the SAG29-deficient mutants were less sensitive to high salinity. Consistent with this, the 35S:SAG29 transgenic plants showed reduced cell viability in the roots under normal growth condition. In contrast, cell viability in the SAG29-deficient mutant roots was indistinguishable from that in the roots of control plants. Notably, the mutant roots exhibited enhanced cell viability under high salinity. Our observations indicate that the senescence-associated SAG29 protein is associated with cell viability under high salinity and other osmotic stress conditions. We propose that the SAG29 protein may serve as a molecular link that integrates environmental stress responses into senescing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CaMV:

Cauliflower Mosaic Virus

DIC:

Differential interference contrast microscopy

FDA:

Fluorescein diacetate

GFP:

Green fluorescent protein

IAA:

Indole-3-acetic acid

JA:

Jasmonic acid

MS:

Murashige and Skoog

PI:

Propidium iodide

qRT-PCR:

Quantitative real-time RT-PCR

SAG:

Senescence-associated gene

TM:

Transmembrane motif

References

  • Artero RD, Terol-Alcayde J, Paricio N, Ring J, Bargues M, Torres A, Perez-Alonso M (1998) Saliva, a new Drosophila gene expressed in the embryonic salivary glands with homologues in plants and vertebrates. Mech Dev 75:159–162

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8:314–325

    Article  CAS  PubMed  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Ramírez A, López-Bucio J, Ramírez-Pimentel G, Zurita-Silva A, Sánchez-Calderon L, Ramírez-Chávez E, González-Ortega E, Herrera-Estrella L (2004) The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity. Plant Cell 16:2020–2034

    Article  PubMed  Google Scholar 

  • Gamas P, Niebel Fde C, Lescure N, Cullimore J (1996) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact 9:233–242

    CAS  PubMed  Google Scholar 

  • Ge YX, Angenent GC, Wittich PE, Peters J, Franken J, Busscher M, Zhang LM, Dahlhaus E, Kater MM, Wullems GJ, Creemers-Molenaar T (2000) NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Plant J 24:725–734

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MF, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  CAS  PubMed  Google Scholar 

  • Gookin TE, Kim J, Assmann SM (2008) Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in vivo protein coupling. Genome Biol 9:R120

    Article  PubMed  Google Scholar 

  • Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147:852–863

    Article  CAS  PubMed  Google Scholar 

  • Hamada M, Wada S, Kobayashi K, Satoh N (2005) Ci-Rga, a gene encoding an MtN3/saliva family transmembrane protein, is essential for tissue differentiation during embryogenesis of the ascidian Ciona intestinalis. Differentiation 73:364–376

    Article  CAS  PubMed  Google Scholar 

  • He Y, Gan S (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805–815

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647–654

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Zhu JK (2010) Phenotypic analysis of Arabidopsis mutants: germination rate under salt/hormone-induced stress. Cold Spring Harb Protoc. doi:10.1101/pdb.prot4969

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    Article  CAS  PubMed  Google Scholar 

  • Ma H (2001) Plant G proteins: the different faces of GPA1. Curr Biol 11:R869–R871

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    CAS  PubMed  Google Scholar 

  • Moriyama EN, Strope PK, Opiyo SO, Chen Z, Jones AM (2006) Mining the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome Biol 7:R96

    Article  PubMed  Google Scholar 

  • Mou Z, Wang X, Fu Z, Dai Y, Han C, Ouyang J, Bao F, Hu Y, Li J (2002) Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. Plant Cell 14:2031–2043

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  • Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–3388

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

    Article  CAS  PubMed  Google Scholar 

  • Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261–273

    Article  CAS  PubMed  Google Scholar 

  • Tagoh H, Kishi H, Muraguchi A (1996) Molecular cloning and characterization of a novel stromal cell-derived cDNA encoding a protein that facilitates gene activation of recombination activating gene (RAG)-1 in human lymphoid progenitors. Biochem Biophys Res Commun 221:744–749

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Taylor C, Wang TW (2000) Altered membrane lipase expression delays leaf senescence. Biochem Soc Trans 28:775–777

    Article  CAS  PubMed  Google Scholar 

  • Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104:479–496

    CAS  PubMed  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    Article  CAS  Google Scholar 

  • Ulker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    Article  PubMed  Google Scholar 

  • Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8:200–201

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22:1463–1482

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103:10503–10508

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biogreen 21 (20080401034001) and National Research Laboratory Programs and by grants from the Plant Signaling Network Research Center (2010-0001453), the National Research Foundation of Korea (2007-03415 and 20090087317), and from the Agricultural R&D Promotion Center (309017-5), Korea Ministry for Food, Agriculture, Forestry and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Mo Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, P.J., Park, JM., Kang, S.K. et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233, 189–200 (2011). https://doi.org/10.1007/s00425-010-1293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1293-8

Keywords

Navigation