Skip to main content
Log in

Review: origin of complex algae by secondary endosymbiosis: a journey through time

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Secondary endosymbiosis—the merging of two eukaryotic cells into one photosynthetic cellular unit—led to the evolution of ecologically and medically very important organisms. We review the biology of these organisms, starting from the first proposal of secondary endosymbiosis up to recent phylogenetic models on the origin of secondarily evolved protists. In addition, we discuss the organelle character of the symbionts based on morphological features, gene transfers from the symbiont into the host and re-import of nucleus-encoded plastid proteins. Finally, we hypothesize that secondary endosymbiosis is more than enslaving a eukaryotic, phototrophic cell, but reflects a complex interplay between host and symbiont, leading to the inseparability of the two symbiotic partners generating a cellular entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PPC:

Periplastidal compartment

TOM:

Translocon of the outer mitochondrial membrane

TIM:

Translocon of the inner mitochondrial membrane

TOC:

Translocon of the outer chloroplast membrane

TIC:

Translocon of the outer chloroplast membrane

SELMA:

Symbiont-specific ERAD-like machinery

References

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 284:33683–33691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 100:582–590

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A 100:7678–7683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsera M, Soll J, Bölter B (2009) Protein import machineries in endosymbiotic organelles. Cell Mol Life Sci 66:1903–1923

    Article  CAS  PubMed  Google Scholar 

  • Bodył A, Mackiewicz P, Gagat P (2012) Organelle evolution: Paulinella breaks a paradigm. Curr Biol 22:R304–R306

    Article  PubMed  Google Scholar 

  • Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG (2009) Protein targeting into secondary plastids. J Eukaryot Microbiol 56:9–15

    Article  CAS  PubMed  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldón T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    Article  CAS  PubMed  Google Scholar 

  • Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol 46:347–366

    Article  CAS  PubMed  Google Scholar 

  • Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Höppner MP, Ishida K, Kim E, Kořený L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65

    Article  CAS  PubMed  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Eschbach S, Hofmann CJ, Maier UG, Sitte P, Hansmann P (1991a) A eukaryotic genome of 660 kb: electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina. Nucleic Acids Res 19:1779–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschbach S, Wolters J, Sitte P (1991b) Primary and secondary structure of the nuclear small subunit ribosomal RNA of the cryptomonad Pyrenomonas salina as inferred from the gene sequence: evolutionary implications. J Mol Evol 32:247–252

    Article  CAS  PubMed  Google Scholar 

  • Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG (2011) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol 3:140–150

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gilson PR, Maier UG, McFadden GI (1997) Size isn’t everything: lessons in genetic miniaturisation from nucleomorphs. Curr Opin Genet Dev 7:800–806

    Article  CAS  PubMed  Google Scholar 

  • Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci U S A 103:9566–9571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23:2413–2422

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Fan E, Hempel F, Maier UG, Klösgen RB (2007) Translocation of a phycoerythrin alpha subunit across five biological membranes. J Biol Chem 282:30295–30302

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Maier UG, Martin WF (2015) Protein import and the origin of red complex plastids. Curr Biol 25:R515–R521

    Article  CAS  PubMed  Google Scholar 

  • Greenwood AD, Griffiths HB, Santore UJ (1977) Chloroplasts and cell compartments in Cryptophyceae. Br Phycol J 12:119

    Google Scholar 

  • Grosche C, Hempel F, Bolte K, Zauner S, Maier UG (2014) The periplastidal compartment: a naturally minimized eukaryotic cytoplasm. Curr Opin Microbiol 22:88–93

    Article  PubMed  Google Scholar 

  • Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530

    Article  CAS  PubMed  Google Scholar 

  • Hampton RY, Sommer T (2012) Finding the will and the way of ERAD substrate retrotranslocation. Curr Opin Cell Biol 24:460–466

    Article  CAS  PubMed  Google Scholar 

  • Hansmann P (1988) Ultrastructural localization of RNA in cryptomonads. Protoplasma 146:81–88

    Article  Google Scholar 

  • Hansmann P, Eschbach S (1991) Isolation and preliminary characterization of the nucleus and the nucleomorph of a cryptomonad, Pyrenomonas salina. Eur J Cell Biol 52:373–378

    Google Scholar 

  • Hansmann P, Falk H, Sitte P (1985) DNA in the nucleomorph of Cryptomonas demonstrated by DAPI fluorescence. Z Naturforschung Sect C Biosci 40:933–935

    Google Scholar 

  • Heiny SR, Pautz S, Recker M, Przyborski JM (2014) Protein traffic to the Plasmodium falciparum apicoplast: evidence for a sorting branch point at the Golgi. Traffic 15:1290–1304

    Article  CAS  PubMed  Google Scholar 

  • Hempel F, Bozarth A, Sommer MS, Zauner S, Przyborski JM, Maier UG (2007) Transport of nuclear-encoded proteins into secondarily evolved plastids. Biol Chem 388:899–906

    Article  CAS  PubMed  Google Scholar 

  • Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Hempel F, Felsner G, Maier UG (2010) New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms. Mol Microbiol 76:793–801

    Article  CAS  PubMed  Google Scholar 

  • Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330

    Article  Google Scholar 

  • Hirakawa Y, Burki F, Keeling PJ (2012) Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Eukaryot Cell 11:324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janouskovec J, Horák A, Oborník M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleinig H, Sitte P (1984) Zellbiologie. Ein Lehrbuch. 1. Auflage. Gustav Fischer-Verlag, Stuttgart, New York

  • Kneip C, Voss C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Köhler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJ, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1489

    Article  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A 104:19908–19913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau JB, Stork S, Moog D, Sommer MS, Maier UG (2015) N-terminal lysines are essential for protein translocation via a modified ERAD system in complex plastids. Mol Microbiol 96:609–620

    Article  CAS  PubMed  Google Scholar 

  • Lau JB, Stork S, Moog D, Schulz J, Maier UG (2016) Protein-protein interactions indicate composition of a 480 kDa SELMA complex in the second outermost membrane of diatom complex plastids. Mol Microbiol 100:76–89

    Article  CAS  PubMed  Google Scholar 

  • Lauterborn R (1895) Protozoenstudien II. Paulinella chromatophora nov. gen., nov. spec., ein beschalter Rhizopode des Süßwassers mit blaugrünen chromatophorenartigen Einschlüssen. Z Wiss Zool 59:537–544

    Google Scholar 

  • Lee RE (1977) Evolution of algal flagellates with chloroplast endoplasmic reticulum from the ciliates. S Afr J Sci 73:179–182

    Google Scholar 

  • Liu X, Hempel F, Stork S, Bolte K, Moog D, Heimerl T, Maier UG, Zauner S (2016) Addressing various compartments of the diatom model organism Phaeodactylum tricornutum via sub-cellular marker proteins. Algal Res 20:249–257

    Article  Google Scholar 

  • Ludwig M, Gibbs SP (1987) Are the nucleomorphs of cryptomonads and Chlorarachnion the vestigial nuclei of eukaryotic endosymbionts? Ann New York Acad Sci 501:198–211

    Article  Google Scholar 

  • Ludwig M, Gibbs SP (1989) Evidence that the nucleomorphs of Chlorarachnion reptans (Chlorarachniophyta) are vestigial nuclei: morphology, division and DNA-DAPI fluorescence. J Phycol 25:385–394

    Article  Google Scholar 

  • Maier UG, Hofmann CJ, Eschbach S, Wolters J, Igloi GL (1991) Demonstration of nucleomorph-encoded eukaryotic small subunit ribosomal RNA in cryptomonads. Mol Gen Genet 230:155–160

    Article  CAS  PubMed  Google Scholar 

  • Maier UG, Douglas SE, Cavalier-Smith T (2000) The nucleomorph genomes of cryptophytes and chlorarachniophytes. Protist 151:103–109

    Article  CAS  PubMed  Google Scholar 

  • Marin B, Nowack EC, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond Ser B Biol Sci 370:20140330

    Article  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    Article  CAS  PubMed  Google Scholar 

  • McFadden GI, Gilson PR, Hofmann CJ, Adcock GJ, Maier UG (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci U S A 91:3690–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites. Nature 381:48

    Article  Google Scholar 

  • McFadden GI, Gilson PR, Douglas SE, Cavalier-Smith T, Hofmann CJ, Maier UG (1997) Bonsai genomics: sequencing the smallest eukaryotic genomes. Trends Genet 13:46–49

    Article  CAS  PubMed  Google Scholar 

  • Moog D, Stork S, Zauner S, Maier UG (2011) In silico and in vivo investigations of proteins of a minimized eukaryotic cytoplasm. Genome Biol Evol 3:375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moog D, Rensing SA, Archibald JM, Maier UG, Ullrich KK (2015) Localization and evolution of putative triose phosphate translocators in the diatom Phaeodactylum tricornutum. Genome Biol Evol 7:2955–2969

    Article  CAS  PubMed  Google Scholar 

  • Moore CE, Curtis B, Mills T, Tanifuji G, Archibald JM (2012) Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biol Evol 4:1162–1175

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Ishida K (2009) Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol 19:R284–R285

    Article  CAS  PubMed  Google Scholar 

  • Nowack EC, Grossman AR (2012) Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A 109:5340–5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowack EC, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G (2011) Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol 28:407–422

    Article  CAS  PubMed  Google Scholar 

  • Nowack EC, Price DC, Bhattacharya D, Singer A, Melkonian M, Grossman AR (2016) Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci U S A 113:12214–12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays 29:1048–1058

    Article  CAS  PubMed  Google Scholar 

  • Peschke M, Moog D, Klingl A, Maier UG, Hempel F (2013) Evidence for glycoprotein transport into complex plastids. Proc Natl Acad Sci U S A 110:10860–10865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleiff E, Becker T (2011) Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol 12:48–59

    Article  CAS  PubMed  Google Scholar 

  • Sheiner L, Fellows JD, Ovciarikova J, Brooks CF, Agrawal S, Holmes ZC, Bietz I, Flinner N, Heiny S, Mirus O, Przyborski JM, Striepen B (2015) Toxoplasma gondii Toc75 functions in import of stromal but not peripheral apicoplast proteins. Traffic 16:1254–1269

    Article  CAS  PubMed  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS Nature 407:81–86

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Crosby K, Lee RW (2011) Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol 3:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maier U-G (2007) Der1-Mediated pre-protein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24:918–928

  • Spork S, Hiss JA, Mandel K, Sommer M, Kooij TW, Chu T, Schneider G, Maier UG, Przyborski JM (2009) An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1134–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoebe B, Maier UG (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219:123–130

    Article  PubMed  Google Scholar 

  • Stork S, Moog D, Przyborski JM, Wilhelmi I, Zauner S, Maier UG (2012) Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. Eukaryot Cell 11:1472–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stork S, Lau J, Moog D, Maier UG (2013) Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. Protoplasma 250:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Shirato S, Hirakawa Y, Ishida K (2015) Nucleomorph genome sequences of two chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata. Genome Biol Evol 7:1533–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2011) Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 3:44–54

    Article  CAS  PubMed  Google Scholar 

  • Tanifuji G, Onodera NT, Brown MW, Curtis BA, Roger AJ, Ka-Shu Wong G, Melkonian M, Archibald JM (2014) Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. BMC Genomics 15:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  CAS  PubMed  Google Scholar 

  • Tonkin CJ, Struck NS, Mullin KA, Stimmler LM, McFadden GI (2006) Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61:614–630

    Article  CAS  PubMed  Google Scholar 

  • Wilson RJ, Williamson DH (1997) Extrachromosomal DNA in the Apicomplexa. Microbiol Mol Biol Rev 61:1–16

  • Wood DO, Wood RR, Tucker AM (2014) Genetic systems for studying obligate intracellular pathogens: an update. Curr Opin Microbiol 17:111–116

    Article  Google Scholar 

  • Wu M, Sun L, Vamathevan J, Riegler M, Deboy R, Brownlie J, McGraw E, Mohamoud Y, Lee P, Berry K et al (2004) The genome sequence and evolution of the reproductive parasite Wolbachia pipientis wMel: a streamlined—proteobacterium massively infected with mobile genetic elements. PLoS Biol 2:327–341

    Article  CAS  Google Scholar 

  • Wunder T, Martin R, Löffelhardt W, Schleiff E, Steiner JM (2007) The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evol Biol 7:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Yutin N, Wolf MY, Wolf YI, Koonin EV (2009) The origins of phagocytosis and eukaryogenesis. Biol Direct 4:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Zientz E, Dandekar T, Gross R (2004) Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68:745–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CJ Hofmann for templates for Fig. 2 and all the former and current members of our group for important contributions to the topic. We are supported by the Deutsche Forschungsgemeinschaft (DFG) within the CRC 987 and by grants Ma1232/15 and Ma1232/16. Additionally, we acknowledge support from the LOEWE Centre for Synthetic Microbiology (SynMikro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U.G. Maier.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Uli Kutschera

Dedicated to the memory of Prof. Dr. Peter Sitte

From the senior author:

In the 1980s, Peter Sitte decided to start investigating the cell biology and evolution of cryptophytes. At this time, some members of our group were quite young and others not born at all, but this decision still dominates our scientific life. He taught us to ask the correct scientific questions and to design the appropriate experiments, all of it in a friendly atmosphere. I am very grateful for our common time and would like to pay tribute to my forever unforgotten teacher and friend.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentil, J., Hempel, F., Moog, D. et al. Review: origin of complex algae by secondary endosymbiosis: a journey through time. Protoplasma 254, 1835–1843 (2017). https://doi.org/10.1007/s00709-017-1098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1098-8

Keywords

Navigation