Skip to main content

Advertisement

Log in

Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Cell suspension cultures of Vitis vinifera cv. Dauphine berries were used to study the response to the vascular pathogen, Eutypa lata, in comparison with a biological control agent, Trichoderma atroviride, that was previously shown to be effective in pruning wound protection. The expression of genes coding for enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins was profiled over a 48-h period using quantitative reverse transcriptase PCR. The cell cultures responded to elicitors of both fungi with a hypersensitive-like response that lead to a decrease in cell viability. Similar genes were triggered by both the pathogen and biocontrol agent, but the timing patterns and magnitude of expression was dependent on the specific fungal elicitor. Culture filtrates of both fungi caused upregulation of phenylalanine ammonia-lyase (PAL), 4-coumaroyl Co-A ligase (CCo-A) and stilbene synthase (STS), and a downregulation of chalcone synthase (CHS) genes. The pathogen filtrate caused a biphasic pattern in the upregulation of PAL and STS genes which was not observed in cells treated with filtrates of the biocontrol agent. Analytical assays showed significantly higher total phenolic content and chitinolytic enzyme activity in the cell cultures treated with the T. atroviride filtrate compared to the pathogen filtrate. These results corresponded well to the higher expression of PAL and chitinase class IV genes. The response of the cell cultures to T. atroviride filtrate provides support for the notion that the wound protection by the biocontrol agent at least partially relies on the induction of grapevine resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afifi M, El-Kereamy A, Legrand V, Chervin C, Monje MC, Nepveu F, Roustan JP (2003) Control of anthocyanin biosynthesis pathway gene expression by eutypine, a toxin from Eutypa lata, in grape cell tissue cultures. J Plant Physiol 160:971–975

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson E, Becker JVW, Jacobson D, Nguema-Ona E, Steyn C, Denby KJ (2011) Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Res Notes 4:493. doi:10.1186/1756-0500-4-493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amalfitano C, Agrelli D, Arrigo A, Surico G, Evidente A (2011) Stiblene polyphenols in the brown red wood of Vitis vinifera cv. Sangiovese affected by “esca proper”. Phytopathol Mediterr 50(Supp):S224–S235

    Google Scholar 

  • Anand A, Lei Z, Sumner LW, Mysore KS, Arakane Y, Bockus WW, Muthukrishnan S (2004) Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. Mol Plant-Microbe Interact 17:1306–1317

    Article  CAS  PubMed  Google Scholar 

  • Andolfi A, Mugnai L, Luque J, Surico G, Cimmino A, Evidente A (2011) Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins 3:1569–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Hamdi S, Mérillon JM (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499

    Article  CAS  PubMed  Google Scholar 

  • Bénard-Gellon M, Farine S, Goddard ML, Schmitt M, Stempien E, Pensec F, Laloue H, Mazet-Kieffer F, Fontaine F, Larignon P, Chong J, Tarnus C, Bertsch C (2014) Toxicity of extracellular proteins from Diplodia seriata and Neofusicoccum parvum involved in grapevine Botryosphaeria dieback. Protoplasma. doi:10.1007/s00709-014-0716-y

    Google Scholar 

  • Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J (2004) Xylem sap protein composition is conserved among different plant species. Planta 219:610–618

    Article  CAS  PubMed  Google Scholar 

  • Calderón A, Zapata JM, Muñoz R, Pedreño MA, Ros Barceló A (1993) Resveratrol production as a part of the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. New Phytol 124:455–463

    Article  Google Scholar 

  • Calderon A, Zapata JM, Barcel AR (1994) Differential expression of a cell wall-localized peroxidase isoenzyme capable of oxidizing 4-hydroxystilbenes during the cell culture of grapevine (Vitis vinifera cv. Airen and Monastrell). Plant Cell Tissue Organ 37:121–127

    Article  CAS  Google Scholar 

  • Camps C, Kappel C, Lecomte P, Léon C, Gomès E, Coutos-Thévenot P, Delrot S (2010) A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata. J Exp Bot 61:1719–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang X, Heene E, Qiao F, Nick P (2011) The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. PLoS One 6:e26405. doi:10.1371/journal.pone.0026405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapuis L, Richard L, Dubos B (1998) Variation in susceptibility of grapevine pruning wound to infection by Eutypa lata in south-western France. Plant Pathol 47:463–472

    Article  Google Scholar 

  • Coutos-Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  PubMed  Google Scholar 

  • Dadakova K, Havelkova M, Kurkova B, Tlolkova I, Kasparovsky T, Zdrahal Z, Lochman J (2015) Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection. J Proteome 119:143–153

    Article  CAS  Google Scholar 

  • De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defence against phytopathogenic fungi. Curr Opin Plant Biol 5:295–299

    Article  PubMed  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Me´traux JP, Van Loon LC, Dicke M, et al. (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937

    Article  PubMed  Google Scholar 

  • De Wit PJGM (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64:2726–2732

    Article  PubMed  Google Scholar 

  • Del Río J, Gómez P, Baidez A, Fuster M, Ortuno A, Fraias V (2004) Phenolic compounds have a role in the defence mechanism protecting grapevine against the fungi involved in Petri disease. Phytopathol Mediterr 43:87–94

    Google Scholar 

  • Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamm M, Héloir MC, Kelloniemi J, Poinssot B, Wendehenne D, Adrian M (2011) Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Mol Gen Genomics 285:273–285

    Article  CAS  Google Scholar 

  • Gerhardt LDA, Sachetto-Martins G, Contarini MG, Sandroni M, Ferreira RDP, Lima VM, De Cordeiro MC, De Oliveira DE, Margis-Pinheiro M (1997) Arabidopsis thaliana class IV chitinase is early induced during the interaction with Xanthomonas campestris. FEBS Lett 419:69–75

    Article  Google Scholar 

  • Giannakis C, Bucheli CS, Skene KGM, Robinson SP, Scott SN (1998) Chitinase and β-1,3-glucanase in grapevine leaves: a possible defence against powdery mildew infection. Aust J Grape Wine Res 4:14–22

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Me´traux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  CAS  PubMed  Google Scholar 

  • Gomès E, Coutos-Thévenot P (2009) Molecular aspects of grapevine-pathogenic fungi interactions. In: Roubelakis-Angelakis A (ed) Grapevine molecular physiology and biotechnology, 2nd edtn edn. Springer, Dordrecht, pp. 407–428

    Chapter  Google Scholar 

  • Grover A (2012) Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31:57–73

    Article  CAS  Google Scholar 

  • Gubler WD, Rolshausen PE, Trouillas FP, Úrbez-Torres JR, Voegel TM, Leavitt GM, Weber EA (2005) Grapevine trunk diseases in California. Pract Winery Vineyard 6–25

  • Hanson L, Howell C (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176

    Article  CAS  PubMed  Google Scholar 

  • Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Hayes CK, Lorito M, Broadway A, Di Pietro A, Peterbauer C, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  • Hématy K, Cherk C, Somerville S (2009) Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12:406–413

    Article  PubMed  Google Scholar 

  • Jacobs AK, Dry IB, Robinson SP (1999) Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathol 48:325–336

  • John S, Wicks TJ, Hunt JS, Lorimer MF, Oakey H, Scott ES (2005) Protection of grapevine pruning wounds from infection by Eutypa lata using Trichoderma harzianum and Fusarium lateritium. Australas Plant Pathol 34:569–575

    Article  Google Scholar 

  • Joshi BN, Sainani MN, Bastawade KB, Gupta VS, Ranjekar PK (1998) Cysteine protease inhibitor from pearl millet: a new class of antifungal protein. Biochem Biophys Res Commun 246:382–387

    Article  CAS  PubMed  Google Scholar 

  • Joubert D, De Ascensoa-Slaughter A, Kemp G, Becker J, Krooshof G, Bergman C, Benen J, Pretorius I, Vivier M (2006) The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res 15:687–702

    Article  CAS  PubMed  Google Scholar 

  • Kariola T, Palomäki TA, Brader G, Palva ET (2003) Erwinia carotovora susp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis. Mol Plant-Microbe Interact 16:179–187

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A, Giavalisco P (2005) Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol 5:11. doi:10.1186/1471-2229-5-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotze C, Van Niekerk J, Halleen F, Fourie PH (2011) Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol Mediterr 50(Supp):S247–S263

    Google Scholar 

  • Li J, Brader G, Palva TE (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132. doi:10.1186/1756-0500-1-132

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima MRM, Ferreres F, Dias ACP (2012) Response of Vitis vinifera cell cultures to Phaeomoniella chlamydospora: changes in phenolic production, oxidative state and expression of defence-related genes. Eur J Plant Pathol 132:133–146

    Article  CAS  Google Scholar 

  • Lo SC, Nicholson RL (1998) Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Implications for a compensatory role in the defense response. Plant Physiol 116:979–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472

    Article  CAS  PubMed  Google Scholar 

  • Marchive C, Leon C, Kappel C, Coutos-Thevenot P, Corio-Costet MF, Delrot S, Lauvergeat V (2013) Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS One 8:e54185. doi:10.1371/journal.pone.0054185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mclusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3′-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

  • Munkvold G, Marois J (1995) Factors associated with variation in susceptibility of grapevine pruning wounds to infection by Eutypa lata. Phytopathology 85:249–256

    Article  Google Scholar 

  • Munkvold G, Duthie J, Marois J (1994) Reductions in yield and vegetative growth of grapevines due to Eutypa dieback. Phytopathology 84:186–192

    Article  Google Scholar 

  • Mutawila C, Fourie PH, Halleen F, Mostert L (2011) Histo-pathology study of the growth of Trichoderma harzianum, Phaeomoniella chlamydospora and Eutypa lata on grapevine pruning wounds. Phytopathol Mediterr 50(Supp):S46–S60

    Google Scholar 

  • Neri L, Baraldi R, Osti F & Di Marco S (2008) Effects of Trichoderma harzianum applications on fresh pruning wounds in Actinidia deliciosa for the protection against pathogens associated with the “wood decay” of kiwifruit. In 16th IFOAM Organic World Congress, Modena. http://orgprints.org/12142. Accessed 9 July 2013

  • Nguema-Ona E, Moore JP, Fagerström AD, Fangel JU, Willats WG, Hugo A (2013) Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection. BMC Plant Biol 13:46. doi:10.1186/1471-2229-13-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pechanova O, Hsu C-Y, Adams JP, Pechan T, Vandervelde L, Drnevich J, Jawdy S, Adeli A, Suttle JC, Lawrence AM, Tschaplinski TJ, Séguin A, Yuceer C (2010) Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics 11:674. doi:10.1186/1471-2164-11-674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Postel S, Kemmerling B (2009) Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol 20:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Qiao F, Chang XL, Nick P (2010) The cytoskeleton enhances gene expression in the response to the Harpin elicitor in grapevine. J Exp Bot 61:4021–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolshausen PE, Greve LC, Labavitch JM, Mahoney NE, Molyneux RJ, Gubler WD (2008) Pathogenesis of Eutypa lata in grapevine: identification of virulence factors and biochemical characterization of cordon dieback. Phytopathology 98:222–229

    Article  CAS  PubMed  Google Scholar 

  • Rotter A, Camps C, Lohse M, Kappel C, Pilati S, Hren M, Stitt M, Coutos-Thévenot P, Moser C, Usadel B, Delrot S, Gruden K (2009) Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine. BMC Plant Biol 9:104. doi:10.1186/1471-2229-9-104

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnee S, Viret O, Gindro K (2008) Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol 72:128–133

    Article  CAS  Google Scholar 

  • Seifert GJ, Blaukopf C (2010) Irritable walls: the plant extracellular matrix and signalling. Plant Physiol 153:467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharathchandra RG, Stander C, Jacobson D, Ndimba B, Vivier MA (2011) Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. PLoS One 6:e14708. doi:10.1371/journal.pone.0014708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaver LA, Leung SH, Puderbaugh A, Angel SA (2011) Two methods of determining total phenolic content of foods and juices in a general, organic and biological chemistry lab. J Chem Educ 88:492–495

    Article  CAS  Google Scholar 

  • Sosnowski R, Wicks J, Scott S (2011) Control of Eutypa dieback in grapevines using remedial surgery. Phytopathol Mediterr 50(Supp):S277–S284

    Google Scholar 

  • Steponkus PL, Lanphear FO (1967) Refinement of the triphenyltetrazolium chloride method of determining cold injury. Plant Physiol 42:1423–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Geraats BPJ, Linthorst HJM (2006a) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006b) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12:130. doi:10.1186/1471-2229-12-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White EJ, Venter M, Hiten NF, Burger JT (2008) Modified cetyltrimethylammonium bromide method improves robustness and versatility: the benchmark for plant RNA extraction. Biotechnol J 3:1424–1428

    Article  CAS  PubMed  Google Scholar 

  • Wielgoss A, Kortekamp A (2006) Comparison of PR1 expression in grapevine cultures after inoculation with a host- and a non-host pathogen. Vitis 45:9–13

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from Winetech, the South African Table Grape Industry (SATI), the Technology and Human Resources for Industry Programme (THRIP) and National Research Foundation (NRF). The grant holders acknowledge that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF-supported research are that of the author(s), and that the NRF accepts no liability whatsoever in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mostert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Hanns H. Kassemeyer

Electronic supplementary material

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutawila, C., Stander, C., Halleen, F. et al. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes. Protoplasma 254, 863–879 (2017). https://doi.org/10.1007/s00709-016-0997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-0997-4

Keywords

Navigation